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Chapter 1

Prediction research

Prediction models are an important asset in modern medicine. [1, 2] They are
commonly developed, validated and used for the prediction of a patient's current
(diagnostic prediction models) or future (prognostic prediction models) health sta-
tus, and may thereby aid in medical decision making and to inform patients on
their health. [3, 4, 1, 5] Risk predictions can be used to make decisions regarding
the need for additional diagnostic tests, initiating life-style changes or other pre-
ventive strategies, identifying the most e�ective treatment for an individual and for
benchmarking the quality of medical centers. Well known examples are QRISK 3,
which was developed to facilitate prevention of future heart disease and stroke [6],
EuroSCORE II for predicting mortality after cardiac surgery in order to facilitate
better decision-making and which may be used as a benchmark in the assessment
of the quality of cardiac surgery, [7] and the APRI for predicting the risk of �brosis
and cirrhosis in chronic hepatitis C patients. [8]

As prediction models are developed using data from real persons, they allow for
an objective assessment of current or future disease status and quanti�cation of the
uncertainty regarding that assessment. This requires a high quality of measuring the
predictors in a prediction model. These predictors may include individual partic-
ipants' characteristics, signs, symptoms, biomarker or imaging test values, genetic
test results, biopsy results, etc. A prediction model uses a weighted combination of
these predictors to assign a probability to a patient that a health status is present
or will be present within a certain time frame.

Prediction models are commonly developed on the data from observational stud-
ies or health care records, though data from randomized controlled clinical trials
are also sometimes used. Once developed, a prediction model's performance needs
to be estimated in other individuals than from which the prediction model was de-
veloped. [3, 9] More speci�cally, it needs to be shown that the model has adequate
discrimination and calibration. [10, 9] Discrimination refers to the model's ability
to separate individuals with the outcome (health status) from those without that
outcome. Calibration refers to the agreement between the outcome probabilities
predicted by the model and the true probabilities of the outcome. That is the abso-
lute values of the predicted probabilities need to agree with the observed frequencies
of the outcome.

Although these prediction model performance measures can be estimated di-
rectly in the development data, this approach yields performance measures that
tend to be over-optimistic. The general trend is that model performance decreases
when a model is applied to new participants and this decrease can be substantial.
[11] A primary cause of this is over�tting, which means that the model's predictor
weights (called predictor coe�cients) are adapted to idiosyncrasies in the develop-
ment data at hand rather than the true underlying patterns. An over�tted model
yields predicted outcome risks or values for new individuals that are too extreme
and are expressed with too much certainty. Besides invalid predictor coe�cients,
model performance may also be a�ected by di�erences in the measurement method
of predictor or outcome variables and by di�erences in patient characteristics (case-
mix). [12, 13, 14, 15, 16]

In order to ascertain whether a developed prediction model is su�ciently robust
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against aforementioned issues, it has been recommended to assess its performance
in data from new individuals not used to develop the prediction model in so-called
external validation data sets. [3, 9] These prediction model validation studies are
preferably conducted on data from a di�erent population, setting or time period,
to assess the model's geographic and temporal accuracy. [17] This may also high-
light the need for tailoring the model to these populations and settings, to update
the model or re-estimate the prediction model entirely. [18, 19, 20, 21] The tai-
lored or updated model then needs further validation to ensure that predictions are
su�ciently accurate in new individuals.

It has become increasingly common that developed prediction models are exter-
nally validated before publication. [22, 9] Obviously there is merit to this practice,
yet it also has drawbacks. First, separation of development and validation data
implies that a smaller than necessary sample is used for both the development and
the validation of the prediction model, which reduces the precision of the estimates.
Second, when data sets from multiple studies are available for model development,
as in an individual participant data meta-analysis (IPD-MA) setting, the choice for
which data sets are to be used for development and which for validation can be arbi-
trary. Third, adequate performance in a single validation study does not necessarily
imply that performance will be adequate in practice; for this the validation study
needs to re�ect the target population and setting. Accordingly, poor performance in
a validation study may be a consequence of a sample from a non-target population
or setting being used for validation.

Individual participant data meta-analysis

Prediction models should ideally be developed and validated in large samples from
multiple populations and settings. [17, 23, 20, 24, 25] This requires research groups
to join e�orts by sharing their individual participant data and subsequently apply-
ing adequate statistical methods to synthesize the data across studies or research
centers. To account for heterogeneity between settings and populations (random-
e�ects) meta-analysis can be used, which appropriately weights the evidence from
each study. When applied to the combined data of individuals from multiple stud-
ies, this is referred to as individual participant data meta-analysis (IPD-MA). In
this thesis we address several of the aforementioned issues in prediction research
and how these can be resolved in IPD-MA or other large clustered data sets where
IPD are available from multiple settings or populations, such as electronic health-
care records. Two prime examples of this are electronic health care records and
IPD meta-analysis, where the IPD from multiple centers or studies are combined
into a single data set. Notably, the use of these large clustered data sets has several
advantages. [26]

1. It improves model development, by enabling the evaluation of the prediction
model's heterogeneity across populations and settings during the model devel-
opment. Commonly, the predictive performance of developed models varies
across populations and settings. Having this data already available during
model development allows one to adapt the model during model development
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so that it performs adequately in each setting. As the variety of participant
characteristics (case-mix) is larger in clustered data sets, this also allows one
to better account for non-linear e�ects of patient characteristics.

2. It allows for more informative prediction model validation. As estimates of
discrimination and calibration are readily available in each of the samples in
the combined data set, the variation in this performance can be explored,
its causes can be investigated, the model's generalizability to other popula-
tions and settings can be quanti�ed and the need updating the model can
immediately be investigated.

3. The observed data can be used more e�ciently, as it does not require the split-
ting of samples into development and validation sets and thereby increases the
sample sizes available for both these tasks. This reduces the danger of over�t-
ting in prediction model development, which implies that the resulting models
will be more robust. In turn, increased sample sizes for validation imply that
the estimates of discrimination and calibration are more precise. It also al-
lows for borrowing information across studies. Apart from borrowing across
studies to reduce the variance of estimates, it also allows for the borrowing
of information on the quality of measurements. This may enable the estimat-
ing of a predictor-outcome association in multiple populations and settings
even when a high quality measurement of a certain predictor may be entirely
unavailable in some studies.

Outline of this thesis

In chapter 2 we provide a review of methods for performing an IPD-MA of ther-
apeutic intervention studies where the time to an event is the outcome of primary
interest. This is the case when the event is certain to occur but the time until the
event is unknown, such as death. Time-to-event analysis, commonly named sur-
vival analysis, allows one to estimate the e�ectiveness of therapeutic interventions
and to predict (average) survival times. We provide guidance on the analysis of
individual participant data with time-to-event outcomes from multiple therapeutic
intervention studies. We illustrate the methods in a real IPD-MA of randomized
clinical trials on the e�ectiveness of Carbamazepine and Valproate to increase the
time to epileptic seizures in epilepsy patients.

In chapter 3 we discuss Stepwise Internal-External Cross-Validation (SIECV)
for the development of more generalizable prediction models when multiple indi-
vidual participant data sets are available. We show how this method can be used
to assess and improve the generalizability of prediction models during prediction
model development. We illustrate our methodology on two motivating examples:
the diagnosis of deep vein thrombosis and the prediction of atrial �brillation.

In chapter 4 we develop methods for the standardization of di�erent data sets
in an IPD-MA of prediction model validation studies. We show how propensity
score methods can be applied to use data from a non-target population or setting in
prediction model validation. This e�ectively increases the sample size available for
model validation and thereby improve the reproducibility of performance estimates.

10



1

Chapter 1

It facilitates the interpretation of (heterogeneity in) prediction model performance
in these data sets in terms of the intended population and setting.

It is common in research that a variable of interest is measured with error,
that is the preferred measurement method is not available for some participants.
For categorical predictors this implies that misclassi�cation may occur, which will
result in a biased predictor-outcome relation (or exposure-outcome relation) [27, 28,
29, 30, 31, 32, 33, 34, 35] So far, methods for handling predictor misclassi�cation
have been restricted to single studies and aggregate data meta-analysis (that is,
based on estimates reported in the literature). In chapter 5 we discuss methods
for restoring the predictor-outcome association in individual participant data meta-
analyses where the ideal measurement method of a predictor is unavailable for
some of the participants in the IPD-MA or even for all participants in some studies
included in the IPD-MA.

In chapter 6 we provide recommendations for the minimum sample size for the
development of prediction models for multinomial outcomes using penalized and
unpenalized estimation methods. We base these recommendations on a full factorial
simulation study and a motivating example on predicting the correct diagnosis in
patients suspected of ovarian cancer.

Finally, in chapter 7 we provide an overview of meta-analysis methods for
prognosis research, when (possibly a combination of) individual participant data
as well as aggregate prediction model study data are available from the literature.
We �nish with providing general recommendations for performing an IPD-MA in
prediction modeling research.
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Individual participant data
meta-analysis of intervention
studies with time-to-event
outcomes: A review of the
methodology and an applied
example

Valentijn M.T. de Jong, Karel G.M. Moons, Richard D. Riley, Catrin Tudur Smith,
Anthony G. Marson, Marinus J.C. Eijkemans, Thomas P.A. Debray. Individual
participant data meta-analysis of intervention studies with time-to-event outcomes:
A review of the methodology and an applied example.Research Synthesis Methods,
2020; 1�21. DOI: 10.1002/jrsm.1384
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Abstract
Many randomized trials evaluate an intervention e�ect on time-to-event outcomes.
Individual participant data (IPD) from such trials can be obtained and combined
in a so-called IPD meta-analysis (IPD-MA), to summarize the overall intervention
e�ect.

We performed a narrative literature review to provide an overview of methods
for conducting an IPD-MA of randomized intervention studies with a time-to-event
outcome. We focused on identifying good methodological practice for modeling
frailty of trial participants across trials, modeling heterogeneity of intervention ef-
fects, choosing appropriate association measures, dealing with (trial di�erences in)
censoring and follow-up times, and addressing time-varying intervention e�ects and
e�ect modi�cation (interactions).

We discuss how to achieve this using parametric and semi-parametric methods,
and describe how to implement these in a one-stage or two-stage IPD-MA frame-
work. We recommend exploring heterogeneity of the e�ect(s) through interaction
and non-linear e�ects. Random e�ects should be applied to account for residual het-
erogeneity of the intervention e�ect. We provide further recommendations, many of
which speci�c to IPD-MA of time-to-event data from randomized trials examining
an intervention e�ect.

We illustrate several key methods in a real IPD-MA, where IPD of 1225 par-
ticipants from 5 randomized clinical trials were combined to compare the e�ects of
Carbamazepine and Valproate on the incidence of epileptic seizures.

14
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2.1 Introduction

Relative intervention e�ects (e.g. hazard ratios) are most reliably evaluated in ran-
domized clinical trials (RCT). However, multiple RCTs of the same intervention
may provide inconclusive or con�icting evidence on e�cacy or safety. Discrepancies
between evidence from di�erent RCTs may arise due to chance, or in particular due
to heterogeneity in the true intervention e�ect. This heterogeneity is commonly
caused by across-trial di�erences in, for example, study design (e.g. recruitment
strategy, length of follow-up, or analysis methods), case-mix of participants, de�ni-
tion of the studied outcome(s), the implementation (e.g. dosage or intensity) of the
intervention. This motivates the need to systematically integrate and summarize
evidence across trials, to facilitate evidence-based-medicine.

This can be achieved using a systematic review with meta-analysis (MA). Where-
as most meta-analyses are based on aggregated data (AD) from available literature,
individual participant (or patient) data meta-analyses (IPD-MA) of multiple inter-
vention studies are considered the gold standard. [36, 37, 38] IPD-MA o�ers several
advantages, as the meta-analyst has full control of the data analysis and uses the
data at the individual participant level. [39] Key advantages are the standardis-
ation of outcome and follow-up de�nitions, checking of data and quality, proper
modelling of time-to-event outcomes, and the exploration of intervention-covariate
interactions at the participant level. [39, 40] It may thus come to no surprise that
IPD-MA are increasingly common. [41, 42]

Extensive guidance has previously been provided for conducting an IPD-MA of
intervention e�ects, for various types of outcome data, such as binary, [43, 42, 44]
continuous, [41, 42, 45, 46] ordinal [42] and count outcomes. [42] Yet, IPD-MA are
especially useful when analyzing time-to-event outcomes in intervention studies, as
censored outcomes can be reassessed for the meta-analysis, survival measures (e.g.
hazard ratios, median survival) can be calculated directly and independent to trial
reporting, follow-up length can often be increased, time-varying hazard ratios can be
examined, and e�ect modi�ers (intervention-covariate interactions) can be assessed.
[47, 48]

Whereas a wealth of methods have been developed for analyzing and predicting
time-to-event outcomes in single studies, [49, 50, 51, 52] limited guidance exists on
their application in IPD-MA settings. In this article, we aim to provide readers with
this guidance, by means of our systematic search of databases, narrative review and
explanation, and an applied example. Although we focus IPD-MA of trials, the
methods we describe are also applicable to multi-center trials.

In the next section, we provide the principles as well as several major issues of
time-to-event analyses, that are common in not only IPD-MA but also in single
studies. In section 2.3 we provide details of our systematic literature search of
methodology for IPD-MA of time-to-event outcomes, and then a narrative review
thereof follows in section 2.4 where we discuss the one- and two-stage approaches to
meta-analysis, and in section 2.5 where we discuss issues in more detail. Then, in
section 2.6 we apply several key methods of the review to a real IPD meta-analysis
of clinical trials. Finally, we give provide a discussion in section 2.7 and concluding
remarks in section 2.8.
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2.2 Principles of time-to-event analysis

The analysis of trials with a survival outcome (e.g. death) typically involves statis-
tical models that account for the time Tsurv ;i elapsed until subject i; i = 1 ; ::; n de-
veloped the event of interest. We here denote the probability for subjecti to remain
event-free for at leastt time by the survival function S(t) = P r (Tsurv ;i > t ). A key
challenge in time-to-event (TTE) data is that for many participants Tsurv ;i is cen-
sored toTcens;i , for instance due to dropout or the end of the study. This implies that
for those participants Tsurv ;i > T cens;i . Hence, the outcome for subjecti is typically
summarized by the observed event-free or survival timeTi = min( Tsurv ;i ; Tcens;i )
and the event status D i (where D = 0 when censored, andD = 1 when the event
of interest was observed to have occured). We can compare the survival times of
intervention groups and control, while accounting for censoring, with a variety of
regression methods.

A commonly used method for analyzing right-censored TTE data is the Cox
proportional hazards (PH) model. [53] In this semi-parametric model the e�ect of
the covariates is modeled parametrically, whereas the baseline is left unspeci�ed.
It is typically assumed that the ratio of the hazards for any two individuals is
constant, irrespective of t. The hazard h(tjX ) for an individual with covariate
vector X 0 = ( X 1; : : : ; X k ) is given by equation 2.1.1 (Table 2.1),
where � T = ( � 1; :::; � k ) is a vector of regression parameters. The functionh0(t)
represents the baseline hazard, which is left unspeci�ed. [49, 50] The hazard ratio
for two individuals i = 1 ; 2 is then given by expf � 0(X 1 � X 2)g. For the analysis
of randomized trials, X typically just contains a single covariate representing the
intervention indicator (e.g. X i = 0 for subjects in the control arm and X i = 1 for
subjects in the intervention arm) such that exp (� ) can directly be interpreted as
the relative intervention e�ect.

An important consideration is whether to include other (prognostic) covariates
in the Cox PH model alongside treatment. In many time-to-event models, includ-
ing the Cox PH model, the observed unadjusted intervention e�ect of a protective
intervention may change over time due to covariates (i.e. frailty), even if these
covariates are perfectly balanced between the intervention groups. [54, 55] Frail
participants will have a higher incidence rate than less frail participants. If the
intervention is protective, frail participants in the intervention group will have a
lower incidence rate than frail participants in a control (or an ine�ective interven-
tion) group and participants that are not frail. Over time, the proportion in the
control group that is still at risk will increasingly consist of participants that are
not frail, whereas this will take longer for the intervention group, thereby resulting
in an imbalance in frailty. For trials with a high event rate and most frailty distri-
butions, the unadjusted intervention e�ect will attenuate towards the null (hazard
ratio of 1) as time progresses, which violates the proportional hazards assumption.
[56] The unadjusted intervention e�ect is then the marginal intervention e�ect, [57]
i.e. the average intervention e�ect for the population as a whole, averaged across
all time-points. Hence, it is dependent on the length of the follow-up.
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Table 2.1: Models for two-stage time-to-event meta-analysis

Type Model Hazard function Survival function Ref. No.

Proportional
Hazards

General
model1

h0(t) exp(� 0X ) S(tjX ) = S0(t)exp( � 0X ) [49, 47, 58] 2.1.1

Exponential � exp(� 0X ) S(tjX ) = exp( � �t exp(� 0X )) [49, 51, 58] 2.1.2

Weibull 2 ��t � � 1 exp(� 0X ) S(tjX ) = exp( � �t � exp(� 0X )) [49, 59, 51, 58] 2.1.3

Gompertz3 � exp( t ) exp(� 0X ) S(tjX ) = exp( � �
 (exp( t )� 1) exp(� 0X )) [49, 60, 51] 2.1.4

Accelerated
Failure
Time

General model h0(t expf � 0X g) exp(� 0X ) S(tjX ) = S0(t exp(� 0X )) [49, 51, 61] 2.1.5

Weibull ��t � � 1(exp(� 0X )) � S(tjX ) = exp( � �t � exp(� � 0X )) [51, 49] 2.1.6

Log-logistic4 '
t f 1+ t � ' exp ( � � 0X )g log 1� S( t jX )

S( t jX ) = 'log (t) + � 0X [61, 62, 63] 2.1.7

1 In the Cox Proportional Hazards model, the baseline hazard h0 (t ) is left unspeci�ed.
2 � is a shape parameter, � is a scale parameter.
3 The Gompertz distribution can be generalized to the Gompertz-Makeham distribution by adding a constant to the
hazard function. [64]
4 The log-logistic model is a proportional odds model, where the � parameters can be interpreted as log-odds ratios.
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If the intention is to measure a conditional intervention e�ect, i.e. the interven-
tion e�ect for a participant with given covariate values, the observed unadjusted
intervention e�ect is often not valid. Instead, covariates should be included in the
model, to obtain a conditional intervention e�ect. [65, 66] Further, the adjustment
for a prognostic covariate often increases the power for �nding an intervention ef-
fect. [67] Alternatively, an AFT model could be used (sections 2.5.1 and 2.5.2),
for which the e�ect of missing covariates is absorbed into the baseline parameters,
leaving the unadjusted intervention e�ect una�ected. [56]

The Cox PH model has numerous appealing properties, in particular allowing
the estimation of hazard ratios for included covariates without requiring the shape
of the baseline hazard to be speci�ed. However, its implementation is not always
justi�ed. For instance, di�culties may arise when hazards are non-proportional.
Although e�ects to model non-PH can be included (e.g. with splines, interactions or
time-varying e�ects) in a Cox PH model, this usually complicates the interpretation
of the estimated intervention e�ect.

For these reasons it is often recommended to adopt a model where proportion-
ality occurs on another scale when proportionality of hazards is violated, which
is discussed in section 2.5.2. When absolute survival probabilities for individual
participants are of primary interest, it can be useful to de�ne a parametric func-
tion for h0(t), and thus to abandon Cox PH models altogether, [68, 69] which is
discussed in section 2.5.1. Indeed, even when the focus is mainly on an interven-
tion e�ect, translation of its hazard ratio to the absolute risk scale is important,
which requires the baseline survival to be modelled, either parametrically or non-
parametrically. For a full overview of R packages on time-to-event analysis, see
cran.r-project.org/web/views/Survival.html .

2.3 IPD meta-analysis methods: review

Increasingly often, IPD from multiple studies are available for analysis. This in-
troduces new challenges and allows for di�erent approaches for analysis, which we
set out to identify. We conducted a literature review to identify scienti�c articles
concerning statistical methods for IPD-MA of time-to-event data.

2.3.1 Methods

We systematically searched through Pubmed and Web of Science using the search
�lters supplied in Supporting Information 1 (https://doi.org/10.1002/jrsm.1384),
from conception until December31st , 2018. In addition, we added suggestions and
performed cross-reference checks of the obtained articles. Articles were considered
eligible for inclusion if they described statistical methods for analyzing multiple or
clustered individual participant data sets with a time-to-event outcome. Publica-
tions that met at least one of the following criteria were excluded from our review:

ˆ Full text of the manuscript not available,

ˆ Not published in English,

ˆ Not a peer reviewed article,
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ˆ Application of methods without methodological focus,

ˆ No focus on at least one of the following topics:

- time-to-event outcomes,

- IPD,

- estimation of intervention e�ects,

- meta-analysis or analysis of clustered data.

2.3.2 Results

A total of 1887 unique records were identi�ed through our search strategy, and
were deemed eligible for title and abstract screening (Figure 2.1). Of these, 1713
were removed during screening because the titles did not have a methodological
focus. The remaining 174 records were assessed on the full-text, of which 58 met
the inclusion criteria and 116 did not. Further, a total of 159 unique records were
assessed after being suggested or found through cross-referencing. Of these, 16
suggestions and 54 cross-references met the inclusion criteria and were included in
the review. A total of 128 articles were included in the review, of which a complete
list can be found in Supporting Information 3 (https://doi.org/10.1002/jrsm.1384).

The core methods for analyzing TTE outcomes in IPD-MA are described in sec-
tion 2.4. The structure of this section was de�ned independent of the review, yet the
description of methods therein has resulted from the review. Further, extensions to
these methods, such as relaxing the proportionality of hazards assumption, model-
ing multiple interventions or outcomes, and methods for missing data are described
in section 2.5.1, which was grouped according to the topics identi�ed in the review.
The review has resulted in ten key recommendations backed by references, which
are summarized in Table 2.2.

Figure 2.1: Flowchart of inclusion and exclusion of papers for review.
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Table 2.2: Ten Recommendations for the IPD-MA of TTE data from Randomized Trials Examining an Intervention E�ect

Recommendation Reference

The Cox model may be the default model of choice, but proportionality of hazards [70, 71]
should be tested, e.g. with interaction or time-varying e�ects for the intervention.
Consider non-PH models. [72, 73, 74, 61, 75]
Account for clustering in one-stage models, preferably by strati�cation of the baseline. [54, 76, 77, 78, 79, 80]
Adjust for covariates measured before randomization. [59, 81, 67]
Apply one-stage models if trials are very small or the outcome very rare. [51, 82]
In one-stage models, center covariates within trials. [83]
Model participant-level interactions on the participant-level. [84]
For the intervention e�ect (& its interaction e�ects), apply random e�ects & investigate heterogeneity. [47, 40, 85, 86]
If competing risks are present & absolute risks are of interest, apply competing risks models. [87, 88, 89, 90, 91]
Multiple imputation of missing covariates must account for clustering & time-to-event, [92, 93, 94, 95, 96]
using the event indicator and the Nelson-Aalen cumulative hazard.
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2.4 Description of methods

2.4.1 Time-to-event analysis in individual participant data
meta-analysis

When IPD from multiple trials are available, summary estimates for relative in-
tervention e�ects can be obtained using the so-called one-stage or two-stage ap-
proaches. [82] In the conceptually simpler two-stage approach (section 2.4.2), the
IPD from each trial is analyzed separately to produce trial-speci�c estimates of rel-
ative intervention e�ect (e.g. hazard ratios), using the same methodology in each
trial (e.g. Cox regression). In the second stage, estimates of intervention e�ect
are combined into a weighted average using traditional meta-analysis methods that
ideally account for possible between-trial heterogeneity. In the one-stage approach
(section 2.4.3), data from all studies are analyzed in one analysis, and a variety
of methods can be used to account for clustering of participants within studies.
[51, 80, 49, 97, 42] In both the one- and two-stage approaches, methods to ac-
count for heterogeneity in intervention e�ects across studies are available (Table
2.3). [36, 97, 42] In the one-stage approach, one must also decide how to model or
account for heterogeneity in other parameters (such as adjustment factors or terms
de�ning the baseline hazard). For a discussion on the choice between the one-stage
and two-stage approaches see section 2.8.

Table 2.3: Methods for Modeling Heterogeneity

Baseline Coe�cients Modeled di�erence between trials

Common Common No di�erence, same for every trial

Frailty Random E�ects Proportional di�erences, di�erence between

trials follows distribution

Fixed a Fixed b Proportional di�erences, estimated per trial.

Same shape between trials.

Strati�ed Non-proportional di�erences. Estimated per

trial, with di�erent shapes.

These methods are possible in one-stage meta-analysis. In a two-stage meta-analysis the
baseline is strati�ed and the given options for the coe�cients can be used.
a By adding trial indicators to the model.
b By adding trial indicators � variable interaction to the model.

2.4.2 Two-stage approach

The two-stage approach is often considered the most convenient approach for IPD
meta-analysis, as it does not necessarily require IPD to be exchanged. For instance,
each trial can be analyzed separately, and only their summary statistics are com-
bined. The approach is particularly appealing when not all trials provide IPD, as it
allows reported intervention e�ects and their respective standard errors from non-
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IPD trials to be analyzed in the second stage, together with the estimates from the
IPD trials.

In the �rst stage, common methods for TTE analysis can be used to obtain
estimates of relative intervention e�ect for each trial (so-called aggregate data).
For instance, when applying Cox regression (equation 2.1.1), this yields the log
hazard ratio estimates �̂ j and their corresponding error varianceV(�̂ j ), for trial
j = 1 ; :::; J . Afterwards, the estimated intervention e�ects can be summarized by
calculating a weighted average. For instance, in a so-called common (or �xed) e�ect
meta-analysis it is assumed that all trials share a common intervention e�ect� IV ,
which can be derived as follows:

� IV =

P J
j =1

�̂ j

V ( �̂ j )
P J

j =1
1

V �̂ j )

V(� IV ) =
1

P J
j =1

1
V ( �̂ j )

(2.1)

whereV is the variance. Hereby, it is assumed that the within-trial variancesV (�̂ j )
are known (i.e. estimated without uncertainty). The common e�ect meta-analysis
model can also be formulated as follows:

�̂ j � N
�

� IV ; V (�̂ j )
�

(2.2)

If certain trials provide no IPD, but the intervention e�ect and its variance are
available in the literature, these can be included in the second stage of the two-
stage framework, [98] provided that the models in the �rst stage are speci�ed the
same. If a trial has a small sample size, the Maximum Likelihood estimator of the
intervention e�ect can be a�ected by small sample bias. [99] Worse still, if con-
siderable censoring is present, the likelihood may be monotone and the Maximum
Likelihood may be inestimable, depending on the intervention and covariate distri-
butions. [100] This can be resolved by applying Firth's correction to the likelihood
in the �rst stage, [99, 100] or by opting for a one-stage model instead.

The assumption that an intervention e�ect is common across trials is often
unrealistic, as trials are often a�ected by between-trial heterogeneity. [101, 102] This
heterogeneity may, for instance, appear when participant-level covariates interact
with the intervention e�ect (i.e. e�ect modi�cation), when small sample bias is
present in some estimates of the intervention e�ect, or when aggregate data are
based on invalid modeling assumptions (e.g. in the presence of non-proportional
hazards, non-PH). For time-to-event analysis, between-trial heterogeneity may also
arise due to selection e�ects. In particular, participants who are more frail and
therefore more susceptible to the outcome, are no longer at risk after having an
event. Therefore, over time, the most frail participants are removed from the risk
set, whereas the less frail participants remain at risk (see section 2.2). [54, 65,
103, 49] This, in turn, may lead to di�erent intervention e�ects across trials if the
follow-up length di�ers across trials. For these reasons, in the two-stage approach
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it is generally recommended to adopt a random e�ects meta-analysis model, which
is typically speci�ed as:

�̂ j � N
�

� j ; V (�̂ j )
�

� j � N
�
� RE ; � 2� (2.3)

In contrast to common e�ect models, random e�ects models allow for di�er-
ences in �̂ j due to sampling error within studies (re�ected by V(�̂ j )) and due
to heterogeneity in the true intervention e�ects � j across studies (re�ected by
� 2). Estimates for � RE can thus be interpreted as the average intervention ef-
fect across studies. A con�dence interval for �̂ RE is traditionally constructed as

�̂ RE � z1� �= 2

q
V(�̂ RE ); where z1� �= 2 is the upper �= 2 quantile of the standard

normal distribution. [104] To account for the uncertainty in � 2 and thereby improve
the coverage of the interval, the Hartung-Knapp approach to con�dence intervals is

given by �̂ RE � tJ � 1;1� �= 2

q
VHK (�̂ RE ), where tJ � 1;1� �= 2 is the upper �= 2 quan-

tile of a t-distribution with J � 1 degrees of freedom, andVHK (�̂ RE ) is a modi�ed
variance estimate. [105, 106, 107, 108, 109]

Heterogeneity of the intervention e�ect in the two-stage approach

Statistical heterogeneity in the intervention e�ect can be recognized by�̂ > 0. The
in�uence of heterogeneity on intervention e�ects may be explored by constructing
a prediction interval, which estimates the interval of the likely intervention e�ect in
a (new) individual trial and can be calculated approximately as follows[110, 85]:

�̂ RE � tJ � k; 1� �= 2

q
�̂ 2 + V(�̂ RE ); (2.4)

where �̂ RE is an estimate of� RE and V(�̂ RE ) its variance. Typically the tJ � 2;1� �= 2

quantile is used here, although similar to the con�dence interval there is no consen-
sus on the distribution and its degrees of freedom. [110, 85] When random e�ects
models indicate the presence of important statistical heterogeneity (i.e.̂� > 0, or a
wide prediction interval) of the intervention e�ect, the interpretation of the overall
summary estimate, �̂ RE , may become di�cult or meaningless. Therefore, it is often
helpful to identify sources of heterogeneity in intervention e�ect (see Table 2.4).
[47] This can, for instance, be achieved by assessing the relation between relevant
trial-level covariates (e.g. level of blinding, or dosage) and the trial e�ect estimates,
also known as meta-regression. [84]
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Table 2.4: Potential sources of Heterogeneity in Time-to-event Meta-Analysis

Source Solutions Reference

Non PH + Di�erences in follow-up time Interaction terms [84, 111, 83]
Model e�ect(s) as time-varying, use splines [112, 113]
Use a di�erent model (e.g. AFT) [72, 69, 73, 74, 114, 113]

Di�erence in case-mix Include covariates / prognostic factors [103, 59]
AFT model [59, 73, 74]

Selective dropout or competing risk Model dropout or competing risk [87, 89, 115, 91]

Small sample bias in some studies Bias correction [99]
One-stage MA [116, 115, 42, 82]
Arcsine transform (for two-stage MA) [115]

PH: Proportional Hazards; AFT: Accelerated Failure Time; MA: Meta-Analysis. Hetero-
geneity can be diagnosed by applying frailty and/or random e�ects terms.[80, 86, 48] If
heterogeneity remains, e.g. due to di�erences in study protocols, strati�cation of baseline
hazard/frailty and/or random e�ects terms must be applied.[103, 66]
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When patient-level associations with treatment e�ect are of interest, it is bet-
ter to model interactions between participant-level characteristics (e.g. participant
age) on the participant level. In the two-stage approach, the statistical interaction
between the relevant covariate and intervention are �rst estimated separately in
each trial, and then the resulting coe�cients are meta-analyzed using traditional
meta-analysis models. [101, 71] When the intervention e�ect changes over time,
di�erences in follow-up time between trials will lead to heterogeneous estimates
of intervention e�ect across trials, if unaccounted for. This heterogeneity of in-
tervention e�ects can be quanti�ed with random-e�ects meta-analysis, but would
preferably be modeled directly (section 2.5.2).

Estimation

A commonly used approach to estimate the heterogeneity from the random e�ects
model (equation 2.3), is to use the method of moments by DerSimonian and Laird
(DL). [117] This estimator is biased downwards when the true heterogeneity is
moderate or high and sample sizes are low, as the variance estimates are assumed
to be known and �xed, [118] leading many researchers to suggest alternatives, the
most important of which are mentioned here. The two-step Paule-Mandel method is
similar to DL, but iteratively estimates the study weights, and has reduced bias for
high values of � . Another alternative is the Maximum Likelihood (ML) estimator.
Although the MSE of the ML estimator for � is small, it is very biased when� is
large and the included studies are small. [119] The Restricted Maximum Likelihood
(REML) estimator yields less biased estimates of� and has relatively low MSE.
[120, 121, 122] Therefore, REML and the two-step Paule-Mandel method are the
recommended estimators for� . [118, 122]

As there may be considerable uncertainty in the heterogeneity estimate regard-
less of which estimator is used, [122] it is recommended to report a con�dence in-
terval for the heterogeneity as well. [123] This may be estimated with the Q-pro�le
method [108, 124] or the generalised Cochran between-study variance method. [119]
Further, it should be noted that when fewer than 10 trials are included in the meta-
analysis, or when trials are small or the outcome rare, no currently available method
can reliably estimate the heterogeneity. [122]

Even though estimates for heterogeneity in meta-analysis tend to be biased
in many situations, this barely biases the summary e�ect estimate, unless there
are very few events. [122] The con�dence intervals of the summary e�ect can be
constructed by applying the Hartung-Knapp-Sidik-Jonkman HKSJ method for con-
�dence intervals, [125, 126] which had good coverage in simulations for a minimum
of two studies, unless the number of events was very low. [127, 122] This may be
corrected by applying a modi�cation that ensures that the con�dence intervals are
at least as wide as a �xed-e�ects meta-analysis con�dence interval. [122] Hence, it
is currently recommended to apply a random e�ects model estimated with REML
or two-step Paule-Mandel, and to use the HKSJ method for con�dence intervals.
[122] Alternatively, Bayesian random-e�ects models may be used. However, in the
simulation studies discussed here either aggregate data or non time-to-event IPD
were generated, which is a concern considering that it has been suggested that the
performance of the estimators may be related to the type of outcome. [119] For a
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comprehensive overview of meta-analysis estimators see [128, 119, 129], for a com-
parison of their performance see [118, 122], for an overview of software see [119] as
well as the two recent packages admetan and ipdmetan, [130] and for an up-to-date
overview of R packages seecran.r-project.org/web/views/MetaAnalysis.html .

2.4.3 One-stage approach

Accounting for clustering

When applying the one-stage approach, within-trial and between-trial relationships
are estimated simultaneously, which can give a more complete understanding of the
data. [48] As is the case for two-stage meta-analysis, a one-stage meta-analysis must
account for clustering (Table 2.3). [80, 97] Participants in di�erent studies may di�er
on unmeasured covariates, which will lead to a biased estimate of the conditional
(i.e. for a participant with given covariate values) intervention e�ect regardless of
balance of these covariates between intervention groups, if not adjusted for (section
2.2). [55] Whereas the two-stage approach naturally deals with this by estimating
separate baseline hazards for the di�erent studies, in the one-stage approach we can
use strati�cation (section 2.4.3), frailty models (section 2.4.3) or marginal models
(section 2.4.3).

Strati�ed models

A commonly used approach is to apply a Cox model with strati�ed baseline hazards
but a common intervention e�ect (equation 2.5.1, Table 2.5). [47, 131, 51, 132] This
allows the shapes of the baseline hazards to vary between trials, whereas the hazards
of the di�erent intervention groups are assumed to be proportional within trials,
and gives a single estimate of overall intervention e�ect. When the sample sizes per
trial are very small and many trials are included, the strati�cation of baselines is less
e�cient than the use of frailty terms, [51] though it also requires fewer assumptions
as it fully accounts for any di�erences in baselines between trials. For the meta-
analysis of trials that are each powered to detect a clinically signi�cant intervention
e�ect this should not be an issue, thereby making the strati�cation of the baseline
the preferred model speci�cation.

Frailty models

Rather than stratifying the baseline hazard across the trials, it is possible to model
their distribution through frailty terms. A frailty term is a random parameter (i.e.
random intercept) within the baseline hazard function that is assumed to follow
a speci�ed distribution and thereby allows for di�erences in baseline rate between
(groups of) participants that are a result of unmeasured covariates. Shared frailty
models (equation 2.5.2, table 2.5) are designed to account for these di�erences in
unmeasured covariates between trials. Therefore, the assumption in a frailty model
is that the baseline hazards in each study have the same shape but a di�erent
magnitude. The estimated intervention e�ect is then to be interpreted relative to
other participants in the same trial with the same frailty and covariates. If the
baseline hazard of this model is left unspeci�ed, this leads to the Cox PH model
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Table 2.5: Models for one-stage time-to-event meta-analysis

Type Model Hazard function Survival function Ref. No.

Proportional
Hazards

Strati�ed
baseline

h0j (t) exp(� 0X j ) Sj (t jX j ) = S0j (t)exp ( � 0X j ) [53, 133, 49, 47,
51]

2.5.1

Shared
frailty

h0(t)� j exp(� 0X j )
where � j � Gamma(� )
or log(� j ) � Normal (0; � 2)

Sj (t jX j ) = S0(t) � j exp( � 0X j ) [54, 133, 51, 49,
47]

2.5.2

Random
e�ects

h0(t) exp(� 0X j + b0
j Z j )

where bj � MVN (0; � )
Sj (t jX j ) = S0(t)exp( � 0X j + b0

j Z j ) [134, 135, 133, 48,
80, 113, 136]

2.5.3

Accelerated
Failure Time

Strati�ed
baseline

h0j (t expf � 0X g) exp(� 0X ) Sj (t jX j ) = S0j (t exp(� 0X )) [51] 2.5.4

Shared
frailty

h0(t � j expf � 0X g) � j exp(� 0X )
where � j � Gamma(� )
or log(� j ) � Normal (0; � 2)

Sj (t jX j ) = S0(t � j exp(� 0X )) [137, 74, 51, 113] 2.5.5

Random
e�ects

h0(t expf � 0X j + b0
j Z j g) exp(� 0X j + b0

j Z j )
where bj � MVN (0; � )

Sj (t jX j ; Z j ) = S0(t exp(� 0X j + b0
j Z j )) [137, 74, 51, 113] 2.5.6

In the Cox Proportional Hazards model, the baseline hazard h0 (t ) is left unspeci�ed. For
the baseline hazard of the parametric models, see Table 2.1.
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with random trial intercept. [47, 49] When data from multiple multi-center studies
are combined, nested frailty models can be applied. [138]

It is common to assume a gamma distribution for the frailty, for mathematical
or computational reasons, [66, 49] or a normal distribution for the log-frailty, as this
bears similarity to the generalized linear mixed e�ects model, [49, 139] though many
other distributions including the inverse Gaussian, positive stable, and compound
Poisson are possible. [51, 49, 52] Previous studies have demonstrated that the
gamma frailty model appears to be fairly robust against misspeci�cation of the
frailty distribution, [78, 140] that it describes the frailty of survivors for a large
class of hazard models, [66] and that it can have more power than a strati�ed model.
[77, 51, 140] Therefore, frailty models are generally recommended when the number
of participants per trial is very low. Yet, when the number of participants per trial
is large, as is often the case in meta-analysis when individual trials are designed to
have su�cient power to test for an intervention e�ect, the frailty and strati�cation
approaches will usually yield similar results, given that the assumptions are met.

When a frailty is applied to the baseline hazard, the median hazard ratio (MHR)
can be used to evaluate the meaning of this frailty in the context of the di�erent
studies. [141, 142, 143] The MHR is the median relative di�erence in the hazard
of the occurrence of the outcome when comparing identical participants from two
randomly selected studies ordered by hazard. When a log-normal distribution is
assumed for the frailty, the Median Hazard Ratio (MHR) can be computed as
expf

p
2� 2� � 1(0:75)g, where � � 1 is the inverse of the standard normal distribution.

[142, 143]

Marginal models

In the analysis of clustered data, such as IPD from di�erent studies, where the
interest lies in the average intervention e�ect for the target population as a whole, we
may use marginal models. In such models the dependence between participants from
the same trial is not modeled explicitly but standard errors are adjusted for it. [144,
145] Intervention e�ects are interpreted as relative to participants drawn randomly
from the entire target population from which the participants are considered to be
sampled. [76] When the interest lies in the intervention e�ect of participants in
the individual studies or in the causes of heterogeneity of intervention e�ects across
studies or subgroups, as in an IPD-MA often is the case, conditional models are
needed. [79]

Estimation

Maximum Likelihood (ML) estimates of the mixed e�ects Cox model may be ob-
tained with a Newton-Raphson procedure, [146] with penalization methods by con-
straining the frailty terms with a penalty, [147, 148, 86] by expectation-maximisation,
[135] or by expectation-maximisation and penalization. [136]

Further, residual maximum likelihood (REML) estimates of the mixed e�ects
Cox model can be obtained with a Newton-Raphson procedure, [146, 47, 48] or with
penalization methods by constraining the frailty terms with a penalty. [147, 148]
As the penalized method does not take uncertainty of� 2 into account, it has been
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suggested that it produces less precise estimates of the intervention e�ect. [132]
However, comparative evidence is currently lacking.

Alternatively, the mixed e�ects Cox model can be estimated with a poisson
model, [137] where the time-scale is split into intervals de�ned by event times. [149]
Mixed e�ects parametric models can be estimated with Maximum Likelihood by
adaptive Gauss-Hermite quadrature. [113] Mixed e�ects Weibull models can also
be estimated with REML. [137]

The Bayesian framework allows for the estimation of a wide range of time-to-
event models. For instance, the Cox random e�ects model can be estimated using
Bayesian methods. [150, 134, 51] A random trial e�ect and an intervention by trial
interaction may be evaluated simultaneously in a Bayesian Cox PH model. [151]
For a discussion of commensurate priors for incorporating between-trial variability
in a Bayesian meta-analysis, see [152]. Finally, an overview of software for the
estimation of one-stage time-to-event models is given in Table 2.6.

Heterogeneity of the intervention e�ect in the one-stage approach

Similar to the two-stage approach, we may expect heterogeneity of the intervention
e�ect in the one-stage approach, which makes the common e�ects assumption un-
tenable. As such, it is also recommended for one-stage models to assume random
e�ects (equation 2.5.3, Table 2.5), [135] and to investigate the causes of this het-
erogeneity, if present. [47] One possible cause of heterogeneity of the intervention
e�ect is e�ect modi�cation (i.e. interaction) at the individual level, which can be
investigated by adding an interaction term in the one-stage model. [80] Crucially,
when including such an interaction term (e.g. an intervention-covariate interaction)
in the one-stage approach, special care must be taken to avoid the amalgamation
of within- and across-trial information, as this may lead to ecological bias. This
can be achieved by centering the covariates by their mean values within trials, such
that the interaction estimate is then only based on within-trial information. [83] To
improve the estimation of between-study variance and the coverage of con�dence
intervals, the intervention variable can be centered within studies as well. To further
prevent the borrowing of information across studies that may a�ect the estimate of
the intervention e�ect in the one-stage approach, a covariate by trial indicator in-
teraction can be included. This strati�es the covariates e�ects as it allows covariate
e�ects to be estimated separately for each study (see Table 2.3).

When there are di�erences in follow-up time between trials and the intervention
e�ect changes over time, the estimated intervention e�ects (as quanti�ed by ran-
dom e�ects) will be di�erent per trial. If this is unaccounted for, this will lead to
heterogeneity of the intervention e�ect. This can then be investigated by modeling
the e�ect as time-dependent (section 2.5.2).

In the two-stage approach the in�uence of trial-level characteristics on the in-
tervention e�ect can be estimated with meta-regression in the second stage. In
the one-stage approach it is possible to simultaneously estimate the heterogeneity
of baseline rate of the participants within di�erent studies, the heterogeneity of
intervention e�ects and their correlation. [86]
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Table 2.6: Software for One-stage Time-to-event Models

Program Package/method Description Code in Mentioned in

R, S-Plus - Random e�ects Cox model [136]
survival Cox and parametric time-to-event models. [148, 153, 140]

Strati�ed, frailty and marginal speci�cations [154]
coxme Mixed e�ects Cox models
frailtypack Cox and parametric random e�ects and strati�ed models. [138, 86, 91]

Correlated random e�ects. Competing events. Joint nested frailty models.
SemiCompRisks Bayesian and frequentist random e�ects parametric and [91]

semi-parametric models for competing events.
parfm Parametric frailty models
PenCoxFrail Regularized Cox frailty models
mexhaz Flexible (excess) hazard regression models,

non-proportional e�ects, and random e�ects
dynfrail Semiparametric dynamic frailty models
frailtyEM Frailty models with semi-parametric baseline hazard, recurrent events
joineR Joint random e�ects models of repeated measurements & time-to-event
joint.Cox Joint frailty-copula models with smoothing splines
JointModel Joint model for longitudinal and time-to-event outcomes
joineRML Joint time-to-event and multiple continuous longitudinal outcomes
rstanarm Joint model for hierarchical longitudinal and time-to-event data [155]
surrosurv Time-to-event surrogate endpoints models [156]

SAS PHREG Cox models, including strati�cation or frailty [153, 140] [157]
NLMIXED Mixed e�ects parametric survival models [158]

Joint model for recurrent events and semi-competing risk [159]
GENMOD Poisson regression, marginal models [157]

Stata stcox Cox model, strati�ed and frailty speci�cations.
stmixed Flexible parametric time-to-event models with mixed e�ects [113, 42]
xtmepoisson Mixed e�ects Poisson regression [149]

JAGS, OpenBUGS, - Bayesian mixed e�ects models, [77, 149, 153]
WinBUGS - IPD network meta-analysis [160, 75]

MLwiN - Mixed e�ects time-to-event models [161, 42]

The Survival Kit - Bayesian mixed e�ect time-to-event models [151]
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2.5 Extensions

2.5.1 Modeling the baseline hazard function

Whereas the Cox PH model leaves the baseline hazard unspeci�ed, we may apply
a parametric model by specifying a baseline hazard (Table 2.1), either in the �rst
stage of the two-stage approach, or within the one-stage approach. To allow for
�exible shapes of the baseline hazard, we can apply spline functions. Particularly
the approach of Royston and Parmar is useful, where the baseline cumulative hazard
is modelled using restricted cubic splines, [61] and which has been extended to allow
for random e�ects. [113]

Parametric models are especially suitable when absolute (rather than relative)
risks for individual subjects (rather than for subpopulations) are of primary inter-
est. It leads to smooth predicted survival curves and is well suited to deal with
non-proportionality of hazards. For instance, researchers increasingly often aim
to develop prediction models that can assess individual intervention bene�ts (or
harms). [162] Most simply, one can specify an exponential (eq. 2.1.2) or a Weibull
(eq. 2.1.3) distribution within the proportional hazards framework. The exponen-
tial distribution assumes a constant rate over time, whereas the Weibull distribution
(a generalization of the exponential distribution) allows for accelerated failure times
(AFT). [49] Other (but less common) generalizations of the exponential distribu-
tion that can be used for modeling the baseline hazard are the Gompertz, gamma,
and piecewise constant distributions. [49, 113] Further, the log-logistic, log-normal
and generalized gamma distributions may be used. [61, 113] Unlike PH models,
the estimate of an intervention e�ect in AFT models is una�ected by unmeasured
prognostic covariates. [56] Also in one-stage models a wide range of distributions
for parametric PH and AFT models is available. [113]

2.5.2 Modeling non-proportional hazards

For short trials with a low event rate the proportionality of hazards across time
may be reasonable (i.e. the hazard ratio for the intervention e�ect may be assumed
constant over time), but as the number of events in di�erent intervention groups
diverges a selection of participants remains in the trial for whom proportionality in
the unadjusted intervention e�ect is not realistic. [112, 73] If an intervention is pro-
tective, frail participants in the intervention group will be better protected against
the outcome than frail participants in the control group. Hence, the proportion
of frail participants at risk will decrease more quickly in the control group than
in the intervention group. To account for this issue within studies we can include
covariates in the model, whereas we can use a frailty model to account for this issue
between studies.

Non-proportionality of hazards may also be present due to the intervention e�ect
truly being dependent on time. For instance, an intervention (such as surgery or
chemo-therapy) may cause an increased risk of a negative outcome at �rst, but have
a protective e�ect in the long run. This can be modeled by an interaction e�ect
between the intervention (or a covariate) and time [53] in the one-stage approach or
in the �rst stage of the two-stage approach. To allow for �exible shapes of this time-
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Table 2.7: E�ect Measures for Time-to-Event Analysis

Measure De�nition Ref. No.

Hazard ratio
� ( t jX 1 )
� ( t jX 0 ) ;

� (t jX k ) = � d ln (S( t jX k ))
dt = f ( t jX k )

S( t jX k )

[50, 49] 2.7.1

Odds ratio
O(t jX 1 )
O( t jX 0 ) ;

O(tjX k ) = 1� S( t jX k )
S( t jX k )

[69] 2.7.2

RMSTD(t � ) RMST1(t � ) � RMST0(t � );
RMST(t � ) =

Rt �

0 Sk (t)dt
[168, 170] 2.7.3

Percentile Ratio qk = k th percentile of dist for group A
k th percentile of dist for group B

[114] 2.7.4

RMST = Restricted Mean Survival Time, D = Di�erence.

dependent e�ect, fractional polynomials or splines can be applied. [163, 164, 165]
Two methods have been developed for combining fractional polynomials or

splines in the two-stage approach. The meta curve method directly meta-analyzes
the curves estimated in the �rst stage. Though, this requires setting a reference
level which may have an impact on the results. Alternatively, by using multivariate
meta-analysis (section 2.5.3) the coe�cients can be combined. This method only
works when the same polynomials or splines have been �tted in each study, but
that is not an issue when IPD are available. [166]

Alternatively, non-PH can sometimes be handled more naturally with models
that assume proportionality on another scale. [73, 61] For instance, an intervention
might temporarily reduce the hazards, but as time progresses and the e�ect wears
o�, hazards converge and thereby violate the proportional hazards assumption. This
can be modeled with a proportional odds regression model such as the log-logistic
(equation 2.1.7, Table 2.1), which assumes that covariates have a constant additive
e�ect on the log odds of survival. [167, 62, 63, 69] In this model, the modeled hazard
ratio naturally approaches 1 over time, whereas the odds remain proportional. [62]

As the implementation of TTE models with non-proportional hazards (e.g. with
splines) may complicate the interpretation of regression parameters, alternate e�ect
measures have been proposed to summarize intervention e�ects (Table 2.7). For
instance, the restricted mean survival time (RMST, equation 2.7.3) until time t �

represents the area under the survival curve until time t � . [168, 169, 170] The
RMST can thus be calculated for di�erent intervention groups, and subsequently be
subtracted to assess the intervention e�ect. This di�erence represents the expected
gain (or loss) in survival until time t � for the intervention group, as compared to the
control group. An advantage is that it provides a clinically meaningful summary of
the survival di�erences between intervention groups.

The percentile ratio, an e�ect measure alternative to the more common haz-
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ard ratio, was suggested by to make the interpretation of survival models more
straightforward. [114] Brie�y, the percentile ratio for an intervention is de�ned as
the expected ratio for the time at which a certain fraction (given as 'k') of the
participants will have an event in the intervention group as compared to the con-
trol group (equation 2.7.4). The percentile ratio is easiest to interpret for AFT
models, as the percentile ratio does not depend on the percentile chosen in such
models and always equals the acceleration factor. Two-stage MA methods for the
percentile-ratio have also been developed. [171]

2.5.3 Modeling multiple outcomes

Throughout this manuscript, we have assumed that each patient in each trail is at
risk of having a single type of event (i.e. the outcome of interest, e.g. all-cause
mortality), until censoring takes place. Alternatively, patients may be at risk for
di�erent events, where one event (e.g. death) prevents the patient from having
another event (e.g. liver failure or stroke). Unlike the survival function, relative
intervention e�ects can then still be assessed by modeling cause-speci�c hazards,
which involves the modeling of the time to each type of event in a separate model,
where all alternative types of event are coded as censoring. [88, 172] It is vital to do
this for every type of event, to gain a full understanding of the relative intervention
e�ect with respect to competing events. [88] Whereas for all-cause-mortality there
is a direct relation between the hazard and the survival curve, when modeling
cause-speci�c hazards this is not the case, [173] meaning that this approach does
not have a direct interpretation in terms of absolute survival probabilities for the
outcome of interest. [87] Only when independence of the event of interest and the
competing event can be assumed, the survival function can be estimated by recoding
the competing outcome as censoring, though this assumption is often not realistic.
[90]

Therefore, when prediction of the average time-to-event per intervention group is
wanted, competing events must be modeled using more complex survival models (for
an introduction see [88, 174]). In the two-stage approach, this can be analyzed with
competing risk models in the �rst stage, whereas Bayesian hierarchical competing
risk models have been developed for the one-stage approach, [91] which may also
model recurrent events jointly with the competing risk. [159] Further, multi-state
models can be used to model transitions to intermediate events. [175]

When multiple outcomes that do not compete are available across trials, these
can be assessed jointly in the two-stage framework to improve the e�ciency of the
analyses. [176, 177] For instance, outcomes may have been assessed at multiple
follow-up times, or be de�ned for multiple endpoints. In the �rst stage, estimates
of the intervention e�ects and variances are obtained for each outcome in each
trial. Bootstrapping is used to obtain the covariance between intervention e�ects
for each pair of outcomes in the same trial. [177] In the second stage, the vectors
of estimates (and matrices of variances and covariances) are synthesised using a
multivariate meta-analysis model in the second stage. Hence, multivariate meta-
analysis is particularly relevant to address outcomes or time-points in the IPD from
some trials.
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2.5.4 Modeling multiple interventions

The concepts of multivariate meta-analysis can also be used to compare more than
two interventions. In a so-called network meta-analysis (NMA), direct and indi-
rect evidence about the di�erence in e�ect of two or more treatments is combined
across trials, to summarize the relative e�ects of all available interventions. This
may improve precision of the intervention estimates and allows for comparison of
interventions that have not been compared head-to-head. This method uses di-
rect evidence (intervention e�ects estimated within trials) and indirect evidence
(intervention e�ects estimated across trials), by assuming that both sources of ev-
idence are exchangeable. [178, 179]. When direct and indirect evidence disagree,
the network is said to be inconsistent and may be prone to bias or may cause het-
erogeneity of the estimated intervention e�ects. Such inconsistency can be caused
by e�ect modi�cation, which can be addressed by modelling interactions between
the intervention and patient-level covariates. [160]

In the two-stage approach, an appropriate (e.g. Cox) survival model is �rst
estimated in each trial, possibly adjusting for relevant prognostic factors and e�ect
modi�ers. Corresponding e�ect estimates (e.g.log hazard ratios) can then be pooled
using traditional NMA methods. [178] In the one-stage approach, time-to-event
NMA models can be estimated using Bayesian hierarchical models. [180, 181] Also,
Bayesian one-stage IPD-NMA Royston-Parmar models have been implemented. [75]

2.5.5 Surrogate endpoints

Trials for measuring intervention e�cacy tend to be expensive and require a lengthy
follow-up to observe the clinical outcome. The cost and duration of a trial may be
reduced if a more readily available outcome can be used. Validated surrogate end-
points can be used instead when the surrogate is well known or likely to predict
clinical outcome. [182] These surrogate endpoints are to be validated on the trial
and the participant level, where IPD form multiple trials are preferred. [183, 184]
When response to intervention is used to predict survival, response must be mod-
eled as a time-dependent covariate or a landmarking method must be used. [185]
Alternatively, a joint model with the survival outcome and a continuous surrogate
or a dichotomous surrogate can be used. [186, 187] For an overview and compar-
ison of the performance of measures of surrogacy, see [188, 189].When few trials
are available, the trial level surrogacy cannot reliably be estimated using AD alone.
However, surrogacy can sometimes be estimated on the center level by splitting
multi-center data by center. [184, 190] This requires IPD when center speci�c pa-
rameter estimates are not available. For a recent overview of methods for estimating
surrogacy, see [190]. To include a surrogate directly in the modeling of the outcome,
a joint model can be used. [186, 187] For the one-stage approach, joint models with
up to three levels have also been developed. [155]

2.5.6 Missing data

In a meta-analysis of survival data, several types of missing data may occur. It is
possible, for instance, that not all studies provide IPD and thus that only AD are

34



22

Chapter 2

available for some of the studies. In such cases, it is recommended to combine the
available IPD and AD, as otherwise estimated intervention e�ects may be prone
to (data availability) bias and overly large standard errors. [191] Including AD
in a two-stage meta-analysis approach is fairly straightforward, provided that the
model used for generating the AD is compatible with the models for analyzing
the available IPD. It is also possible to directly combine IPD and AD using a one-
stage meta-analysis, although this requires more advanced models, such as Bayesian
hierarchical regression. [192]

Another common type of missing data occurs when events of individual subjects
are censored, e.g. due to loss of follow-up. Survival models such as the Cox PH
model and the AFT model readily account for this censoring, provided that it is
not related to the outcome, conditional on any participant-level characteristics in
the model (i.e. non-informative). When the assumption of independent censoring
is challenged, its implications can be evaluated by adopting multiple imputation
methods. [193]

Finally, it is possible that subject-level covariates are missing for one or more
studies. Although participant covariates are not commonly used when estimating
relative intervention e�ects from RCTs, they are crucial in IPD-MA of time-to-event
data because of selection di�erences across trials (see section 2.2). When relevant
participant-level covariates are missing for some trial participants, it is generally
recommended to apply multiple imputation. [194] Hereby, researchers should adjust
for the event indicator and the Nelson-Aalen estimator of the cumulative hazard,
[93, 95] and also account for the presence of clustering. The latter can be achieved by
adopting imputation models with mixed e�ects, which also facilitates imputation of
covariates that have not been measured in one or more studies. [94, 195, 96, 196, 197]

Although the assumptions needed for multiple imputation cannot always be
tested or may not always be met, several simulation studies have shown that its use is
usually superior to complete-case analysis or the use of missing data indicators. [92]
However, caution is still warranted when analyzing imputed data sets from IPD-MA,
as in the presence of between-trial heterogeneity these are inherently prone to some
degree of incompatibility with the data generation mechanism. [198, 196] Further,
because IPD-MA can only adjust for measured covariates and may therefore still
be a�ected by unmeasured covariates, clustering of participants within trials should
still be accounted for (section 2.4.3). [49]

2.6 Applied example

The e�cacy of carbamazepine (CBZ) and valproate (VP) as interventions for epilep-
tic seizures was compared in a systematic review and IPD-MA of RCTs. [199] IPD
were obtained for a total of 1225 participants from �ve trials. In all these trials,
one of the outcomes of interest was time to �rst epileptic seizure since randomiza-
tion. Also, measured covariates were age at randomization, sex, type of epilepsy
(partial-onset or generalized-onset), and the number of epileptic seizures before ran-
domization. For illustrative purposes, we only consider the type of epilepsy. We use
the coxmepackage of theRsoftware,[200, 201] to �t the mixed e�ects Cox PH model.
Our code is given in Supporting Information 2 (https://doi.org/10.1002/jrsm.1384).
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As the two-stage method has been described extensively (see [171, 202]) we shall
restrict our analyses to illustrate some key one-stage methods. First, to evaluate the
relative e�ects of CBZ and VP, we adopted a Cox model, as this leaves the baseline
hazard unspeci�ed. We apply a one-stage model (eq. 2.5.2) with a log-normal
frailty and random e�ects for the intervention estimated with penalized partial
likelihood to account for the clustering of participants within trials and to allow for
heterogeneous intervention e�ects across trials, respectively. We �nd no evidence
against the hypothesis that the interventions are equally e�ective, with a summary
hazard ratio of 1.08 for valproate (95% Con�dence Interval (CI): 0:92 to 1:27, p =
.37), versus the referent, carbamazepine.

Figure 2.2: Kaplan-Meier plot of Generalized and Partial Epileptic Seizure Pa-
tients Treated with Carbamazapine (CBZ) or Valproate (VP)

In the analysis of the e�ect of the intervention on the time to �rst epileptic
seizure, we observed some statistical heterogeneity of the intervention e�ect. The
standard deviations of the random intercept (i.e. frailty) and drug e�ect (i.e. ran-
dom e�ect) equaled 0.139 and 0.099, respectively. In other words, the log hazard
ratio of valproate versus carbamazapine varied with a standard deviation of .099
between trials. This random e�ect of the interventions translated to a Median Haz-
ard Ratio (MHR) of 1.10, meaning that the median relative change in the e�ect on
time-to �rst epileptic seizure when comparing two identical participants from two
randomly selected di�erent trials that were ordered by intervention e�ect was 1.10,
calculated asexpf

p
2 0:099 � � 1(0:75)g (see section 2.4.3). In order to explain this

heterogeneity in intervention e�ect, we added covariates and intervention-covariate
interactions to the model (Figure 2.2). Partial epilepsy (vs generalized) was associ-
ated with a higher hazard rate (� = 1 :63, 95% CI: 1.38 to 1.92, Table 2.8), meaning
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that we have found evidence that epilepsy type is a prognostic factor of time to �rst
epileptic seizure. However, we were unable to �nd evidence that epilepsy type in-
teracted with the intervention ( � = 1 :36, 95% CI: 0.97 to 1.89), though it should be
noted that the upper bound of the CI did not exclude clinically signi�cant e�ects.
We note that we obtained somewhat di�erent results than the Cochrane review,
[203] as we have used a di�erent method for analysis. Further, the low power for
tests for interaction e�ects is a notorious issue.

A recent investigation of the intervention-covariate interaction on the time to re-
mission of epilepsy demonstrated that bias occurs when within-trial and across-trial
information is not separated. [83] Such separation can be performed by centering
the covariates, hence we have centered the covariates in in our analysis (Table 2.8).
The possible bias that may occur when within-trial and across-trial information are
amalgamated can be quanti�ed by including the trial-mean in the model, [83] as we
have done here (Table 2.8).

2.7 Discussion

Our search has identi�ed a wide range of articles on topics regarding TTE IPD-MA,
and is the �rst comprehensive review on this topic to our knowledge. However,
the basics of the methodology regarding TTE data was excluded from our search
as it did not concern MA or clustered data. Covering all methodological works
regarding TTE data would have been an immense task. As such, we were forced
to include relevant literature based on our own opinion to introduce this topic, and
restrict our systematic search through Pubmed and Web of Science to works that
simultaneously concerned IPD, meta-analysis and time-to-event data. We did not
cover every article that covers these three topics, as this was not our aim. Instead,
we our purpose was to achieve theoretical saturation, i.e. that an extended search
would be unlikely to add important information.

The general consensus in the reviewed works was that the Cox model should be
the default model of choice for TTE IPD-MA. Though, it is also criticized for not
yielding a valid estimate of intervention e�ect when not all (un-)measured predic-
tive covariates are accounted for, mostly on theoretical grounds. The literature is
currently missing information on the impact of this issue in real life data, leading
us to suggest that further research should focus thereon. As such, we have provided
a comprehensive review of current methods for IPD-MA of TTE data.

Although the statistical properties of the meta-analysis estimators for the two-
stage approach have been well studied and simulation studies have investigated
the performance for meta-analysis of dichotomous and continuous outcome data,
this is not the case for time-to-event data. Further, although aggregate data (i.e.
estimates from the literature) can readily be included in the two-stage approach
(provided that the models are speci�ed the same), as well as in Bayesian one-stage
models, there appears to be no method yet for doing so in a Frequentist model.
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Table 2.8: Intervention, Covariates and Intervention-Covariate Interactions in a Multivariable Mixed E�ects Cox Model

Variable Variable Type HR 95 % CI p
VP (vs CBZ) Intervention 1.05 0.86 to 1.28 0.65
Partial epilepsy (vs generalized), centered Individual-level covariate 1.63 1.38 to 1.92 < .001
Partial epilepsy (vs generalized), trial mean Trial-level covariate 1.47 0.99 to 2.19 0.06
Partial epilepsy (vs generalized), centered * VP (vs CBZ) Intervention-covariate interaction 1.36 0.97 to 1.89 0.07

VP: Valproate, CBZ: Carbamazepine, HR: Hazard ratio, given by exp(� ), CI: Con�dence
interval. Standard deviations of random intercept (i.e. frailty) and random e�ect of VP
(vs CBZ) equal 0.126 and 0.164, respectively. p-values are for Wald type tests of the null
hypothesis that the log HR equals zero.
Covariates are centered within trials, to avoid ecological bias (see[83]).
Trial mean value for the covariate is entered in the analysis, to quantify the bias that would
occur if centering of the covariate were not performed.
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Another issue is to what extend one should try to borrow information across
trials in the one-approach. In the two-stage approach, no information is borrowed
(apart from the intervention e�ect and its uncertainty), as all parameters are nat-
urally estimated per trial. To what extend one should account for this in the
one-stage approach, by stratifying the baseline and covariate e�ects or by apply-
ing random e�ects and a frailty, deserves extra attention in the literature. For the
meta-analysis of trials with adequate sample sizes, the safest choice is to stratify all
included parameters as this accounts for all di�erences in baselines between trials.
In a simulation study where IPD from a total of 600 participants from 3-20 trials
were generated, both the frailty and the strati�ed baseline method worked well, [80]
though exactly what sample sizes are necessary for this strategy, and especially for
the strati�cation of covariates as well, has apparently not yet been identi�ed.

2.8 Concluding remarks

We have discussed numerous models in this manuscript, the choice between which
is not always straightforward. For this reason, we provide some recommendations
below. First, intervention e�ect conditional on covariates and/or frailties have dif-
ferent interpretations from marginal ones (i.e. averaged over the entire sample and
follow-up time), and yield di�erent estimates. Before embarking on an IPD-MA,
researchers should decide whether a conditional or a marginal e�ect is of interest.
As assumptions may be satis�ed on one scale but not the other, this may lead to a
di�erent choice of model.

Additionally, one can choose between one-stage and two-stage models. In the
two-stage method participants within trials are compared, which inherently yields
a conditional intervention e�ect and strati�ed baselines. The one-stage approach
o�ers more possibilities as it allows for conditional intervention e�ects as well as
marginal ones, and frailties for the baseline. When the same (or similar) model
assumptions are made for these models and the same estimation methods are used,
these two approaches generally lead to the same estimates of intervention e�ect.
[48, 82] Though, the one-stage approach can have better convergence properties
when the included studies are very small, [204, 82] or at least one of the studies has
zero events.

Further, when a conditional e�ect is desired (in contrast to a marginal one), we
recommend to apply random e�ects instead of common e�ects, as common e�ects
models are only valid when no heterogeneity is present, which is unlikely in our
experience. When a marginal e�ect is desired, only a correction for the variance is
necessary. As described in section 2.2, when an intervention e�ect is present the
estimated intervention e�ect in PH models may be time-dependent, depending on
the distribution of prognostic factors that are not accounted for (even if balanced
across intervention groups). This may lead to heterogeneity in intervention e�ects
across trials that have di�erent follow-up lengths. Further, di�erences in trial design
and methodology and clinical procedures may contribute to the heterogeneity of the
intervention e�ect. [47] Random e�ects models can account for heterogeneity of the
intervention e�ect and lead to the same solution as common e�ect models when
no heterogeneity is present. However, if a formal test of heterogeneity is desired, a
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variety of tests can be used. For one-stage meta-analysis, the common e�ect model
(without trial e�ects) is nested in the frailty model, and therefore a comparison of
these models can be made using the log-likelihood ratio test. [49] Alternatively, a
score test, [205, 206, 207] or a small sample test can be used. [208] A permutation
test for testing of the presence of heterogeneity in time-to-event data was recently
proposed, and a simulation showed that the method is more powerful and has a
better type I error rate than likelihood ratio tests of a random e�ect. [209]

Finally, when comparing non-nested (e.g. PH versus AFT) models, more general
methods are needed. In such cases, one may select the model with lowest value
for Akaike's Information Criterion (AIC)[210, 211] or the Bayesian Information
Criterion (BIC)[212, 210, 211]. Though, due to the correlated nature of participants
within trials a correction for clustering should be made, which is not straightforward
in the frequentist estimation framework as quanti�cation of the number of degrees
of freedom is di�cult. For subject-speci�c inferences, the conditional (cAIC) can
be used, whereas for inferences on the population level the marginal AIC can be
used. [213, 79, 139, 214]

Further, one should be cautious regarding model selection. If one model is
rejected, bias will appear in the estimated intervention e�ect and signi�cance in
a second model if the second model is not independent of the test that was used
to reject the �rst, such as when a non-PH e�ect is included in the model after a
statistical test indicated non-proportionality. [215] This bias can be alleviated by
bootstrapping the model selection procedure. On the other hand, this bias does
not occur when the second model is independent of the test used to reject the �rst
model. [215]

Highlights

What is known?

ˆ Time-to-event (survival) data can be analyzed with Cox Proportional Hazards
regression, but proportionality of hazards should be tested.

ˆ Individual participant data (IPD) from multiple randomized trials can be
summarized by meta-analyzing the trial-speci�c estimates of the individual
trials (studies) or by analyzing the pooled data with a mixed-e�ects model
that accounts for between-trial heterogeneity in intervention e�ect and frailty
of participants.

What is new?

ˆ We summarize published guidance, statistical methods and software for sur-
vival analysis using IPD from multiple randomized clinical trials.

ˆ We discuss how between-trial heterogeneity of intervention e�ects may appear
and how its sources can be investigated.

ˆ We illustrate the methods on real epilepsy data and provide R code.
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Potential impact for other �elds

ˆ Meta-analysis is not only relevant in medical research, but also in other re-
search areas.

ˆ The methods naturally extend to meta-analysis of non-randomized studies,
where treatment e�ect estimates need to be adjusted for confounding.

Acknowledgements

This work is �nancially supported by the Netherlands Organization for Health Re-
search and Development grant 91617050 for TD and grant 91810615 for VJ and
KM, and the European Union's Horizon 2020 Research and Innovation Programme
under ReCoDID Grant Agreement no. 825746 for VJ and KM. The data that sup-
port the �ndings of this study are not publicly available, according to the conditions
determined by the Epilepsy Monotherapy Trial Group, but are available on request
from AM, by e-mailing A.G.Marson@liverpool.ac.uk. We would like to thank the
editor and reviewers for thoughtful comments on the manuscript and suggesting
items for the review.

41





Chapter 3

Developing more generalizable
prediction models from
individual participant data
meta-analyses and large
clustered data sets

Valentijn M.T. de Jong, Karel G.M. Moons, Marinus J.C. Eijkemans, Richard D.
Riley and Thomas P.A. Debray
Submitted



Chapter 3

Abstract
Prediction models often yield inaccurate predictions for new individuals. Although
large data sets from individual participant data meta-analysis or electronic health-
care records may alleviate this, prevailing strategies for prediction model develop-
ment generally do not account for heterogeneity between settings and populations.
This limits the generalizability of developed models (even from large, combined,
clustered data sets) and necessitates local revisions. We aim to develop methodol-
ogy for producing more robust prediction models that require less tailoring when
applied to di�erent settings and populations.

We adopt Internal-External Cross-Validation to assess and reduce heterogeneity
in a model's predictive performance during its development. We propose a predic-
tor selection algorithm that optimizes the (weighted) average performance whilst
minimizing its variability across the hold-out clusters (or studies). Predictors are
added iteratively until the estimated generalizability is optimized. We illustrate this
methodology by developing a new model for predicting the risk of atrial �brillation
and updating an existing one for diagnosing deep vein thrombosis. We used indi-
vidual participant data from 20 cohorts (N = 10873) and 11 diagnostic studies (N =
10014), respectively. Meta-analysis of calibration and discrimination in each hold-
out cluster shows that trade-o�s between average performance and heterogeneity
occurred.

Our methodology allows for the assessment of heterogeneity of prediction model
performance during model development in multiple or clustered data sets, thereby
informing researchers on predictor selection to minimize heterogeneity. This may
improve the generalizability to di�erent settings and populations, and reduce the
need for tailoring the model. Our methodology has been implemented in theR
packagemetamisc.
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3.1 Background

Large combined clustered data sets are increasingly available, for example in so-
called individual participant data meta-analyses (IPD-MA) projects (where the data
are clustered by study) and in studies using large scale electronic healthcare records
(where the data are clustered by region, hospital, practice, etc). [216] Such data sets
are frequently used to develop prediction models, to predict a current health status
to aid in diagnosis or a future health outcome to provide a prognosis which may
inform clinical decision making. [3, 4, 5] Well known examples are PHASES, [217]
INTERCHEST, [218] S2TOP-BLEED, [219] and EuroSCORE, [220] all of which
were developed using data from multiple centers or studies. Unfortunately, pre-
diction model studies that are based on IPD-MA or electronic healthcare records
(EHR) rarely account for the potential of between-cluster heterogeneity (e.g. Eu-
roSCORE [220]). [221, 15] Sometimes, parameters that capture the baseline risk
are strati�ed by cluster (e.g. INTERCHEST[218]), but then usually no guidance is
provided on how to use the prediction model in new patients.

Although random e�ects models are generally recommended for dealing with
the presence of clustering and heterogeneity, their implementation during predic-
tion model development hampers the applicability of the estimated regression coef-
�cients. In particular, random e�ects modelling does not indicate which parameter
values (for the random intercept and predictor coe�cients) should be used when
the model is applied in new settings and populations. Typically, a single value (e.g.
the mean) is used for these parameters when making predictions.

In general, a developed prediction model cannot generate accurate predictions in
new patients when the true value for its parameters (e.g. the intercept term) varies
across the targeted settings and populations, especially when the true value of cer-
tain parameters is zero or has a reversed sign in some clusters. This heterogeneity
may arise from di�erences in observed and unobserved patient characteristics, dif-
ferences in patients' treatment and management strategies, di�erences in predictor
and outcome de�nitions and di�erences in measurement methods across clusters.

The impact of heterogeneity in predictive associations (i.e. the e�ects of predic-
tors in the included model) has been well documented in the literature. [116, 25]
Many developed prediction models perform poorer than anticipated and require
local revisions prior to implementation. [11] These revisions may involve a simple
intercept update, a recalibration of the linear predictor (i.e. rescale all regression
coe�cients by a single value), the re-estimation of all the individual regression co-
e�cients, or even the inclusion of new predictors. [222, 223, 17, 224] Unfortunately,
revisions are rarely generalizable to other settings and populations; several reviews
have found that prediction model performance substantially varies across validation
studies. [225, 19] Therefore, such revisions, including recalibration and predictor
selection, are preferably performed during prediction model development.

The identi�cation of heterogeneity is not possible when data are available from
only a single setting or (sub)population. For this reason, the use of clustered data
during prediction model development and its subsequent validation o�ers a critical
opportunity to inspect whether this heterogeneity would actually be a concern when
the model would be implemented in clinical practice. [226, 116, 221, 15, 26, 23,
20, 21, 227, 25] However, actually resolving the presence of heterogeneity (and
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thus ensuring model predictions are accurate for all clusters) remains a di�cult
challenge for which limited guidance is available. [228] For this reason, we here
explore an alternative approach that aims to reduce this heterogeneity and minimize
the need for estimating setting-speci�c model parameters, to thereby improve its
generalizability.

Recently, internal-external cross-validation (IECV) has been introduced to assess
the presence of heterogeneity of a model's performance during its development.
[226, 15, 23] IECV is a special case of cross-validation; available data are split non-
randomly in a natural manner by iteratively taking each cluster (or study) as a
hold-out sample. In each iteration, a model is developed on the retained clusters,
and then the model is tested in the hold-out cluster. A key advantage of this is
that it allows the transportability (i.e. the generalizability to other populations and
settings) of the model to be assessed multiple times.

In this paper, we will �rst revisit the IECV framework for assessment of model
performance in large clustered data sets (section 3.2). We then extend the IECV
framework to inform predictor selection during prediction model development in
section 3.3, in order to identify and reduce their impact on the model's performance
within and across clusters in the large combined dataset. We then apply the methods
in our motivating examples in section 3.4 and 3.5. Finally, we provide a discussion
in section 3.6. Our methodology can be applied using the R packagemetamisc.
[229]

3.2 Internal-External Cross-Validation for Model
Validation

Resampling procedures allow the optimal use of the available data, as all data
can be used for model development and subsequent evaluation. Traditionally in
cross-validation procedures, the data is iteratively split into a development and val-
idation set by randomly sampling without replacement. In each iteration, a model
is estimated on the development sample and predictions are made for the random
validation sample. The performance of these predictions in the validation samples
is then averaged across iterations, thereby giving an estimate of the reproducibility
of model performance.

When data are clustered across di�erent studies or settings, traditional resam-
pling procedures that do not account for clustering cannot directly be applied. [230]
For this reason several extensions have been proposed that preserve the clustering
within and the heterogeneity across the generated samples. In the so-called Internal-
External Cross-Validation approach, the data is split by cluster, which may repre-
sent the studies from an IPD-MA or the centers in data from EHR. [226, 20, 23]
A model is then iteratively �t in K-1 clusters (section 3.2.1) and its correspond-
ing performance model performance is calculated in the remaining cluster (section
3.2.2). This is repeated K times, so that, provided that su�cient data are available
in the development and validation clusters, a performance estimate and its standard
error is available for each of the clusters. Thus, IECV is cross-validation where the
hold-out samples are non-random, in the presence of between-cluster heterogeneity.
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IECV therefore allows the study of a developed model's potential transportability
multiple times. Note that if all patients are exchangeable across clusters, IECV
corresponds to the traditional cross-validation and assesses model reproducibility
(rather than transportability). [15]

In contrast to traditional cross-validation, estimates of the performance in the
hold-out samples cannot simply be averaged, as the variation within and across
clusters needs to be taken into account. This can be achieved by adopting a (�xed-
or random-e�ects) meta-analysis of the performance estimates (section 3.2.2), [231]
or by weighting the performance estimates by the number of events in each cluster.
[232] As the data is split non-randomly, this allows the transportability (i.e. the
generalizability to other populations and settings) of the model to be assessed.

3.2.1 Model �tting

The development phase of IECV may involve a one-stage or a two-stage IPD-MA
approach. In the two-stage approach, the prediction model is �tted separately in
each cluster. The model coe�cients estimated in each of the development K-1
clusters are then combined using standard meta-analysis techniques. In the one-
stage approach, a Generalized Linear Model (GLM) is estimated in each of the
K development samples consisting ofK � 1 clusters. This model may account
for clustering by including random intercepts and/or predictor e�ects. [25, 116,
232, 228] A disadvantage of the one-stage approach in IECV is that the data from
each cluster needs to be used K-1 times to �t a model in the one-stage approach.
On the other hand, in the two-stage IECV approach the data from each cluster
only needs to be used for model �tting once, as the second stage comprises meta-
analysis of di�erent combinations of coe�cients and their standard errors. The
two-stage approach may therefore substantially reduce the necessary computational
performance time. However, the two-stage approach may not be feasible when
clusters are relatively small, as parameters then become di�cult to estimate. For
this reason, the two-stage approach appears bene�cial when most clusters (studies)
in the meta-analysis are not small, and we adopt this approach in our article.

Let xp;k;j be the value of a pre-speci�ed predictor p, p = 1,...,P (or function
thereof) measured in individual patients j; j = 1 ; :::; N in cluster k; k = 1 ; :::; K .
Then their outcomes yk;j may be modeled as follows:

yk;j = f (� k +
PX

p=1

� p;k xp;k;j ); (3.1)

where f (:::) is a link function, � k is a cluster-speci�c intercept and � p;k is a cluster-
speci�c coe�cient. Here, we propose to estimate � k and � p;k in each cluster sep-
arately. Subsequently, the estimates can be summarized using traditional meta-
analytic methods. We here use univariate random e�ects meta-analysis, where each
of the estimated coe�cients are summarized separately:

�̂ MA
p;(h) =

P
k6= h wp;k �̂ p;k
P

k6= h wp;k
; (3.2)
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where wp;k is the weight attributed to �̂ p;k estimated in cluster k, and �̂ MA
p;(h) is the

meta-analytic estimate of the coe�cient estimated on data from all clusters except
hold-out cluster h. In the random-e�ects model the wp;k are given by 1

var ( �̂ p;k )+ � 2 ,

where � 2 is the statistical heterogeneity estimate of the coe�cient across clusters:

�̂ p;k � N
�

� p;k ; var
�

�̂ p;k

��

� p;k � N
�

� MA
p;(h) ; � 2

p;(h)

� (3.3)

A con�dence interval (CI) for �̂ MA
p;(h) is preferably constructed with the Hartung-

Knapp approach: �̂ MA
p;(h) � tQ� 1;1� �= 2

q
varHK (�̂ MA

p;(h) ), wheretQ� 1;1� �= 2 is the upper

�= 2 quantile of a t-distribution with Q � 1 degrees of freedom,varHK (�̂ MA
p;(h) ) is a

modi�ed variance estimate and Q = K � 1 as one cluster is held out for valida-
tion. [105, 106, 107, 108, 109] The extent of heterogeneity of a predictor e�ect can
be explored by quantifying a prediction interval (PI), which estimates the inter-
val of probable predictor e�ects in a new individual cluster, and can be calculated

approximately as �̂ MA
p;(h) � tQ� 2;1� �= 2

q
�̂ 2

p;(h) + var(�̂ MA
p;(h) ). [110, 85] A wide predic-

tion interval for the predictor e�ect indicates that the predictor e�ect may be very
di�erent in a new cluster, which makes it unlikely that the predictor will improve
the model's predictions for individuals in a new cluster.

The random e�ects meta-analysis model is preferably estimated with REML or
the Paule-Mandel method. [120, 121, 118, 122] When fewer than 10 clusters are
included in the meta-analysis, or when some clusters are small or the outcome is rare,
the heterogeneity cannot be reliably estimated by any currently available method.
[122] The estimated coe�cients could also be summarized using multivariate meta-
analysis methods, [233, 231] which may be helpful in the presence of collinearity
and missing parameter estimates. The necessary within-cluster covariances can
then directly be estimated from the IPD set at hand. However, usually univariate
and multivariate meta-analysis methods give very similar results when all of the
parameter estimates of interest are available for all clusters, even when correlations
are large. [179] In IECV, all parameters can be estimated from the data hand,
meaning that univariate meta-analysis will usually su�ce.

3.2.2 Assessing external model validity

In each iteration of the IECV, the developed model is validated in individuals from
the hold-out cluster by applying the model (as developed in the other clusters)
using the observed predictor values of individuals. If the developed model contains
random (or strati�ed) intercept terms or predictor e�ects, this also requires choices
about which parameter values are to be used when applying the developed model.

When comparing the risk predictions for the hold-out cluster with the observed
outcomes, several performance measures such as the c-statistic, calibration slope,
calibration intercept and/or mean square error can be calculated. [15, 21, 234]
This process is repeated until each cluster has been used as a hold-out cluster once,
yielding a set of performance statistics for each IECV iteration. The corresponding
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estimates can then be pooled across the hold-out clusters using random e�ects meta-
analysis methods, though some statistics and their standard errors may require
transformation �rst. [231, 235, 228] Similar to the predictor e�ects, a prediction
interval can then be constructed for the performance estimates, which provides an
interval of likely values that the performance statistic will have in a new cluster.

Besides allowing one to obtain an average estimate of performance, meta-analysis
is particularly helpful for investigating the presence of heterogeneity and any pos-
sible causes thereof. [13, 15, 231] Prediction model performance may vary across
clusters due to imprecision or bias of the regression coe�cients or performance es-
timates, or due to the variation in population characteristics. Disentangling these
various sources of variation is necessary when inferring on the model's potential
generalizability to di�erent settings and populations.

Finally, if the average performance and heterogeneity of the performance of the
prediction model are deemed adequate, that is it is considered likely that perfor-
mance will be adequate in a new cluster, a so called global model may be developed
by estimating the coe�cients for the predictors on the data of all available clusters.
In this �nal step no clusters are left out, in order to minimize the variability of the
estimates of the coe�cients. [23]

3.2.3 Motivating example: diagnosis of deep vein thrombosis

Patients with a deep vein thrombosis (DVT) have an increased risk of post-throm-
botic syndrome and pulmonary embolism, which can be fatal. [236] In the majority
of patients in whom DVT is suspected, no DVT is present on advanced (reference)
testing. [237] For illustrative purposes, we here consider the diagnosis of DVT in
patients that are suspected of having DVT and use the IPD of 10014 patients from
eleven studies, [238] where each study is considered one cluster (Table 3.1 and 3.2).
In each cluster separately, we estimated a binary logistic regression model with three
pre-speci�ed predictors: history of malignancy (yes/no), calf di�erence (di�erence
in circumference of the calves� 3 cm), recent surgery (yes/no). Preferably, a
continuous predictor such as calf di�erence should not be dichotomized, as this
leads to a loss of information. However, the continuous predictor was not available
in the data at hand. As some clusters were small, we applied Firth's correction,
[99] which yields unbiased Maximum Likelihood estimates for the coe�cients and
standard errors in small samples [239] and adjusted the intercept post-hoc by re-
estimating it with an unpenalized GLM. [240] We then applied IECV and adopted
a two-stage approach for prediction model development. The pooled regression
coe�cients (including the intercept term) from the development clusters were used
for generating predictions in the hold-out cluster. Although Firth's correction still
yielded estimates with high variance for the predictor coe�cients in some clusters,
this was mitigated by performing a meta-analysis of the regression coe�cients.
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Table 3.1: Clinical Characteristics of DVT Data

Outcome: DVT No Yes Total

Sex Female 5174 (83.8) 1001 (16.2) 6175
Male 2943 (76.7) 896 (23.3) 3839

Malignancy No 7600 (82.8) 1581 (17.2) 9181
Yes 517 (62.1) 316 (37.9) 833

Recent surgery No 7333 (82.4) 1569 (17.6) 8902
Yes 784 (70.5) 328 (29.5) 1112

Leg trauma No 5210 (77.1) 1544 (22.9) 6754
Yes 2907 (89.2) 353 (10.8) 3260

Vein distension No 7257 (82.5) 1538 (17.5) 8795
Yes 860 (70.5) 359 (29.5) 1219

Calf di�erence > 3 cm No 6160 (88.0) 843 (12.0) 7003
Yes 1957 (65.0) 1054 (35.0) 3011

D-dimer abnormal No 4392 (97.0) 137 (3.0) 4529
Yes 3725 (67.9) 1760 (32.1) 5485

Age Mean (SD) 58.8 (17.4) 61.1 (17.1) 10014
Duration of symptoms Mean (SD) 22.8 (45.5) 27.0 (60.5) 10014

Results in Table 3.2 reveal that estimates for the predictor e�ects were very het-
erogeneous across the included clusters. For example, the coe�cient for malignancy
was 0.90 (standard error, SE: 0.33) in cluster 1 and 1.69 (SE: 0.22) in cluster 7.
Similarly, the coe�cient for calf di�erence was 0.98 (SE: 0.15) in cluster 2 and 1.68
(SE: 0.13) in cluster 4. As indicated in Table 3.3 this also resulted in heterogeneous
model performance estimates across hold-out clusters. Although calibration was
good on average, it was highly variable in individual clusters. For instance, whereas
the summary calibration intercept equaled 0.03 (95% CI: -0.33 to 0.39), meaning
that calibration in the large was very good on average, the calibration intercept's
approximate 95% prediction interval (PI) ranged from -1.22 to 1.27, thereby indicat-
ing heterogeneity. Similarly, the calibration of the linear predictors was very good
on average, as the calibration slope (also estimated with Firth's correction) equaled
1.00 (95% CI: 0.83 to 1.16), whereas the approximate 95% PI for the calibration
slope ranged from 0.53 to 1.46. Further, the c-statistic equaled 0.68 (95% CI: 0.65
to 0.71) and was also substantially heterogeneous across clusters (approximate 95%
PI: 0.60 to 0.75).
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Table 3.2: Estimated Regression Coe�cients for Predicting DVT in each of
Eleven Clusters

Cluster Intercept Malignancy Calf di�erence Surgery

1 � 2:46(0:14) 0:90(0:33) 1:17(0:19) 0:04(0:35)
2 � 0:95(0:11) 0:31(0:24) 0:98(0:15) 0:17(0:25)
3 � 2:92(0:44) 1:57(0:87) 1:59(0:50) 1:73(0:54)
4 � 1:92(0:09) 0:63(0:16) 1:68(0:13) 0:83(0:17)
5 � 2:27(0:16) 0:24(0:42) 1:03(0:20) 0:52(0:26)
6 � 2:25(0:12) 1:23(0:30) 1:40(0:17) 0:51(0:21)
7 � 3:18(0:13) 1:69(0:22) 1:41(0:19) 0:26(0:31)
8 � 1:72(0:18) 1:02(0:58) 1:24(0:27) 0:78(0:51)
9 � 2:01(0:11) 0:80(0:25) 1:25(0:14) 0:37(0:19)
10 � 2:16(0:18) 1:04(0:46) 0:65(0:34) 0:79(0:35)
11 � 2:30(0:19) 1:65(0:26) 1:32(0:23) 0:82(0:27)

Summary estimate � 2:17(0:18) 0:98(0:17) 1:27(0:08) 0:55(0:09)
Approximate 95% � 3:33 : � 1:01 0:08 : 1:88 0:86 : 1:67 0:20 : 0:90
prediction interval

Malignancy: history of malignancy, Calf di�erence: di�erence in circumference of calves
� 3 cm, Surgery: recent surgery. Summary estimates and prediction intervals for global model.

On overall, the IECV showed that the modeling strategy was unlikely to yield a
prediction model with good generalizability. Substantial revision would be necessary
to improve the model's average discrimination performance and to reduce the het-
erogeneity of its calibration and discrimination performance. A possible approach
would be to re�ne the original modeling strategy by altering the set of included
predictors and by considering interaction e�ects and/or non-linear terms. Subse-
quently, the revised model should be validated again, after which other revisions
may be decided and so forth. It may be clear that this strategy is very time consum-
ing and may lead to arbitrary choices in predictor selection. For these reasons we
propose a formal framework for predictor selection in the context of heterogeneity
of performance across clusters in the next section. We address methods that aim
to reduce heterogeneity of performance, improve the average performance and a
combination thereof. The code used to apply our methodology as presented in this
manuscript is available on Github (https://github.com/VMTdeJong/SIECV-DVT).
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Table 3.3: Internal-External Cross-Validation Performance Estimates and Stan-
dard Errors for the Prede�ned Model for Predicting DVT

Hold-out cluster for validation Slope (SE) Intercept (SE) c-statistic (SE)

1 0:86(0:15) � 0:44(0:10) 0:65(0:02)
2 0:63(0:11) 1:06(0:08) 0:63(0:02)
3 1:49(0:35) � 0:24(0:22) 0:78(0:05)
4 1:18(0:10) 0:43(0:06) 0:72(0:01)
5 0:73(0:15) � 0:33(0:10) 0:65(0:02)
6 1:12(0:14) � 0:00(0:08) 0:70(0:02)
7 1:24(0:14) � 0:93(0:09) 0:71(0:02)
8 1:02(0:24) 0:51(0:13) 0:67(0:03)
9 0:92(0:11) 0:12(0:07) 0:68(0:02)
10 0:71(0:27) � 0:09(0:14) 0:62(0:04)
11 1:27(0:17) 0:15(0:11) 0:74(0:03)

Summary estimates 1:00(0:08) 0:03(0:16) 0:68(0:06)
Approximate 95% 0:53 : 1:46 � 1:22 : 1:27 0:60 : 0:75
prediction interval

Slope: Calibration Slope, SE: Standard Error, Intercept: Calibration Intercept.

3.3 Stepwise Internal-External Cross-Validation for
Model Development

In the previous section, we described the purpose of IECV to assess the generaliz-
ability of a prediction model that is generated by a prede�ned modeling strategy.
Here, we propose to extend IECV to optimize model generalizabilityduring its de-
velopment. We consider the situation that IECV will be used to expand an empty
(intercept only) model by iteratively adding predictors, functions of predictors and
interaction e�ects. The approach also readily generalizes to the expansion or re-
duction of a given model. In this Stepwise IECV (SIECV) for prediction model
development models are estimated, validated in external data sets and updated in
an iterative process, as follows.

Denote the data from the kth cluster by Sk , and the data from a set of clusters
excluding cluster h by S(h) . Let p; p = 0 ; 1; :::; P be indicators to denote the candi-
date predictors (or functions thereof), wherep = 0 indicates none. The algorithm
consists of up toI model adaptation cycles, whereI generally equalsP, the number
of predictors available for inclusion in the model. Then, let Pr (i ) denote the set of
candidate predictors for inclusion, wherePr (1) = f 1; 2; :::; Pg and Pr (0) = f 0g.

Further, let M i;p denote the models in cyclei with added predictor p in the
stepwise process. LetM i;p; (h) denote a model estimated on data from all clusters
excluding Sh . Let Ẑ i;p;h be an estimate of performance (i.e. a loss function) of model
M i;p; (h) in cluster h, such as the mean squared error. LetÂ i;p be the estimate of
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a loss function (i.e. an aggregated loss function or an estimate of heterogeneity,
further described in section 3.3.2) in cyclei for a model extended with predictor p,
and let c indicate a predictor p that has minimal Â i;p , such that M i;c is the model
with best generalizability in cycle i . Then, the algorithm is de�ned as follows and
starts at cycle i = 0 :

1. For all p in Pr (i ):

(a) Extend model M i � 1;c with predictor p to generate new modelM i;p .

(b) For h; h = 1 ; :::; K :

i. Estimate the model M i;p; (h) on S(h) , preferably while taking cluster-
ing within clusters into account.

ii. Predict ŷi;p;h;j for individual participants in hold-out sample Sk .
iii. Estimate performance measureẐ i;p;h and its standard error

cSE(Ẑ i;p;h ) for predictions ŷi;p;h;j in Sh .

(c) Estimate aggregated loss functionÂ i;p on Ẑ i;p; 1; :::; Ẑ i;p;K and
cSE(Ẑ i;p; 1); :::; cSE(Ẑ i;p;K ).

2. Find the minimal Â i;p in this cycle. Denote this by Â i;c and its corresponding
model by M i;c .

3. The �rst condition that is satis�ed:

(a) If i = 0 , continue to step 1.

(b) Else, if Â i;c � Â i � 1;c , the algorithm stops and M i � 1;c is returned as the
�nal model.

(c) Else, if i = I , the algorithm stops and M i;c is returned as the �nal model.

(d) Else, remove predictor c from the candidate predictor set Pr (i ), incre-
ment i by 1 and continue to step 1.

Finally, if the performance of model M i;c is deemed satisfactory, a so called global
model is generated by estimating the coe�cients for the predictors in M i;c on all
available data. No clusters are left out in this �nal cycle, to reduce the variance of
the estimates of the coe�cients. [23]

This global model however, is at risk of over�tting as a result of small sample
bias, unless the sample is su�ciently large and the event rate su�ciently high, even
if no selection of predictors were applied. [241, 242, 243] To account for this, the
prediction model could be �tted with penalized regression, such as Firth's regression.
To reduce the variance of the estimated regression coe�cients, the ridge penalty
could be applied instead, or one could opt for a fully Bayesian approach.

By considering the candidate predictors for inclusion, however, the prediction
model is at further risk of over�tting. [3, 58] A straightforward adjustment for
over�tting could be achieved with the calibration slope and intercept. [244] In
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step 1 (b) iii of the �nal cycle these could be estimated and then summary meta-
analyses estimates could be computed. The �nal model coe�cients (excluding the
intercept) would then be multiplied by the summary calibration slope, whereas
the summary calibration intercept would be added to the global model's intercept,
thereby yielding a �nal model. Ideally, however, the entire model selection procedure
is to be performed within an additional bootstrap or cross-validation procedure,
[245] as this would account for any over�tting introduced by the SIECV itself.
Alternatively, heuristic shrinkage, that shrinks the coe�cients by a function of the
number of predictors considered, may be applied. [246, 3, 58]

3.3.1 Extensions

Throughout this manuscript, we work from the perspective that an entirely new
prediction model is to be developed. However, our proposed framework readily
encompasses model redevelopment including the adding and removal of predictor
terms. Selection of predictor e�ects may then also be performed with a backwards
procedure starting with all candidate predictors and their transformations or inter-
actions, rather than forwards. Though, this may yield issues in the estimation when
many predictor e�ects are considered, especially when random e�ects are applied.
Further, similar to IECV for model validation we may adopt a one- or two-stage
approach (section 3.2.1) for model estimation.

3.3.2 Quantifying model generalizability

The SIECV algorithm requires speci�cation of an aggregated loss function (A i;p )
that is to be minimized, in order to optimize generalizability of performance across
clusters. Here, we consider parametric and non-parametric aggregated loss func-
tions, that vary with respect to the importance they place on the average and
heterogeneity of performance.

Ignoring heterogeneity

As a �rst step, we consider a naive estimator of predictive performance across
hold-out data sets from di�erent clusters, that ignores variation within and across
clusters. This approach may be reasonable when the clusters are very large and of
similar size, and when the clustering is negligible. The overall performance is then
given by the mean performance across clusters. For instance, when optimizing the
mean square error (MSE, or Brier score for categorical outcomes), we can apply the
following aggregated loss function:

dAM
i;p =

1
K

KX

h=1

Ẑ i;p;h (3.4)

Weighted meta-analysis

To incorporate the uncertainty of the predictive performance estimates into an ag-
gregated loss function, it may be more appropriate to adopt a weighting procedure.
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The meta-analysis framework (see section 3.2.1) therefore appears an appealing
choice. A straightforward extension to equation 3.4 would be to apply the weight-
ing procedure in described in equations 3.2 and 3.3. This allows to minimize the
prediction error in an "average" cluster, but still does not attempt to optimize their
stability across clusters. As a result, it is possible that developed models perform
well on average, but require substantial local revisions before implementation. To
reduce the need for local revisions, the aggregated loss function should account not
only for the average performance, but also for its variation across clusters. For this
reason, we propose an extension that combines both sources of error:

dARE �
i;p = � Ẑ RE

i;p + (1 � � )�̂ i;p (3.5)

where� is a hyperparameter that de�nes the impact of random e�ects meta-analysis
summary estimate of performanceẐ RE

i;p and heterogeneity estimate�̂ i;p on aggre-

gated loss function dARE �
i;p . This is a parameter that is to be chosen on beforehand,

where its value should depend on the relative importance of average and hetero-
geneity of performance. In the simplest case we let� = 1, such that the esti-
mate for generalizability is given by the mean of the distribution of performance,
dARE 1
i;p = Ẑ RE

i;p . Alternatively, if desired, we can set � to 0, such that we can inform
the selection of predictors solely based on the reduction in heterogeneity of per-

formance, yielding dARE 0
i;p = �̂ i;p . Finally, we consider the case where heterogeneity

and average performance are given equal weighting by setting� = 1
2 , such that

d
A

RE 1= 2

i;p = 1
2 Ẑ RE

i;p + 1
2 �̂ i;p .

This equation can be seen as an extension of the bias-variance decomposition of
the MSE where we now have a summation of squared bias, within-cluster variance
and between-cluster variance. Ifp are considered estimators fory , then the MSE
for p can be shown to be:MSE(p) = var( p) + Bias( p; y )2. As �̂ 2 is the estimate of

the between cluster variance ofMSE(p), i.e. varbs, the estimator
d

A
RE 1= 2

i;p estimator
can be interpreted as the mean of:

1
2

�
�

var(p) + Bias( p; y )2
�

+
1
2

�
1 � �

��
varbc

�
var(p) + Bias( p; y )2� �

(3.6)

Variability of performance across data sets

In the meta-analysis approach, the evidence from small clusters is downweighted
to attain an estimate of the mean of the distribution of performance. Yet this
distribution might not be of central importance. Instead, all clusters might be
considered of equal importance. Then we may instead apply a measure of variability
directly to the performance estimates, for instance the standard deviation dASD

i;p =

SD(Ẑ i;p; 1; :::; Ẑ i;p;K ).
Alternatively, if no assumptions can be made on the distribution of the predictive

performance statistics, we may apply a non-parametric measure. For example, when
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using Gini's Mean Di�erence we have [247, 248]:

dAGini
i;p =

2
K (K � 1)

X

1� h � v � K

j Ẑ i;p;v � Ẑ i;p;h j (3.7)

3.4 Motivating example 2: Updating a model for
diagnosing DVT

The prediction model developed in section 3.2.3 had a rather heterogeneous perfor-
mance across validation clusters and was lacking in average discrimination perfor-
mance. This heterogeneity of performance implies that although the outcome may
be predicted well in individuals in some clusters, which may be helpful in diagnosis,
it may be unsatisfactory for individuals in other clusters. The heterogeneity across
the 11 clusters may be explained by di�erences in (measured and unmeasured) pre-
dictor distributions and true predictor e�ects. Therefore we here consider whether
additional predictors and interaction e�ects might explain such di�erences. Whereas
individual clusters may lack the sample size to detect nonlinear e�ects or may lead
to highly variable predictor e�ects, this is more feasible in IPD-MA (and in large
healthcare data bases).

Brie�y, we considered the following ten additional candidate predictors to extend
the model from section 3.2.3: sex, absence of leg trauma, absence of leg trauma x re-
cent surgery (i.e. an interaction e�ect), vein distension, log of duration of symptoms,
age/25 (i.e. divided by 25, to increase the absolute value of its coe�cient), age/25
squared, age/25 x malignancy, abnormal d-dimer value and abnormal d-dimer x
sex. As we developed this model for illustrative purposes only, we applied single
imputation for missing data using a joint model with random e�ects. [249, 229]

We recommend that the inclusion of each candidate predictor (or transformation
thereof) be carefully considered with respect to the improvements in generalizability
of the model performance on the one hand, and the cost of measuring the predictor
on the other. Here, we apply our methodology to illustrate how each of the strate-
gies regarding heterogeneity of performance leads to di�erent model speci�cations,
and thereby to di�ering average and heterogeneity of performance. To assess the
generalizability of prediction models that use these predictor functions, we follow
the SIECV strategy for model development that we developed in section 3.3, apply
the MSE (i.e. Brier score) to the predicted probabilities in the hold-out clusters
and apply the aggregated loss functions (measures of heterogeneity) on the MSE
estimates and standard errors thereof, to select predictors as outlined in section
3.3.2.

The six applied aggregated loss functions lead to models with four di�erent
predictor function speci�cations (Table 3.4), as the strategy that ignored cluster-
ing (AM ) when estimating generalizability of performance lead to the same model
speci�cation as the strategy that optimized the meta-analytic mean of performance
(ARE 1 ), and the meta-analysis strategy that placed equal importance on heterogene-
ity and average performance (ARE 1= 2 ) lead to the same model speci�cation as the
ASD strategy. As the SIECV allows for the estimation of any performance statistic,
we assessed discriminatory performance with the c-statistic, and calibration with
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the calibration slope and intercept, for the �nal model for each aggregated loss
function. Subsequently, we summarized the performance and heterogeneity thereof
with univariate random e�ects meta-analyses.

Table 3.4: Estimated Regression Coe�cients of Seven Models for Predicting
DVT Estimated with (S)IECV

Predictor None AM ARE 1 ARE 1= 2 ARE 0 ASD ASD

Intercept � 2:17 � 3:54 � 3:54 � 5:13 � 5:00 � 5:13 � 3:99
Malignancy 0:98 0:76 0:76 1:64 1:68 1:64 2:05
Calf di�erence 1:26 1:13 1:13 1:38 1:34 1:38 1:07
Surgery 0:55 � 0:04 � 0:04 0:25 0:25 0:25 0:34
D-dimer positive 2:76 2:76 2:99 2:94 2:99 2:81
Age/25 � 0:22 � 0:22
Vein distension 0:46 0:46
Surgery x No leg trauma 0:68 0:68
No leg trauma 0:95 0:96 0:95
(Age/25) 2 � 0:02 � 0:02
Male 0:32 0:36 0:32 0:52
D-dimer positive x Male � 0:20 � 0:24 � 0:20 � 0:28
Malignancy x Age/25 � 0:32 � 0:35 � 0:32 � 0:50

None: Model with no predictor selection, A M : Mean performance; A RE 1 : Random e�ects
meta-analytic estimate of mean of distribution of performance; A RE 0 : Random e�ects meta-
analytic estimate of heterogeneity of distribution of performance; A RE 1= 2 : Sum of random
e�ects meta-analytic estimates of mean and heterogeneity of distribution of performance; A SD :
Standard Deviation; A Gini : Gini's mean di�erence.
Malignancy: history of malignancy, Calf di�erence: di�erence in circumference of calves � 3
cm, Surgery: recent surgery, Age/25: Age divided by 25, Duration: duration of symptoms.
Empty cells indicate the predictor was not selected for inclusion in the corresponding model.
Summary predictor e�ects were estimated by the Dersimonian and Laird method, as REML
did not converge for the estimation of some models. Although REML has better theoretical
properties for the heterogeneity estimate, the di�erence for the summary e�ects (presented
here) is limited.

In terms of calibration slopes (also estimated with Firth's correction), all strate-
gies showed some over�t (summary calibration slope< 1), though to varying de-
grees (Table 3.5, Figure 3.1). Slopes< 1 imply that the estimated slopes were too
large (the log odds ratios deviated too far from 0), which yielded predictions for
individuals that were too extreme. The linear predictors in the ASD strategy and
the meta-analytic strategy that combined heterogeneity and average performance
(ARE 1= 2 ) were the worst calibrated (calibration slope of 0.85), and theAGini strategy
the best (0.94).
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Table 3.5: Meta-Analysis Summary Estimates of SIECV
Performance of Six Strategies for Predicting DVT

Measure Strategy ARE 1 95% CI 95% PI

Calibration None 1:00 0:83 : 1:16 0:53 : 1:46
slope AM 0:92 0:80 : 1:04 0:59 : 1:26

ARE 1 0:92 0:80 : 1:04 0:59 : 1:26
ARE 1= 2 0:85 0:73 : 0:97 0:48 : 1:22
ARE 0 0:87 0:73 : 1:00 0:46 : 1:27
ASD 0:85 0:73 : 0:97 0:48 : 1:22
AGini 0:94 0:82 : 1:07 0:57 : 1:32

Calibration None 0:03 � 0:33 : 0:39 � 1:22 : 1:27
intercept AM � 0:06 � 0:46 : 0:35 � 1:47 : 1:35

ARE 1 � 0:06 � 0:46 : 0:35 � 1:47 : 1:35
ARE 1= 2 0:16 � 0:25 : 0:58 � 1:27 : 1:60
ARE 0 � 0:04 � 0:47 : 0:39 � 1:51 : 1:43
ASD 0:16 � 0:25 : 0:58 � 1:27 : 1:60
AGini � 0:20 � 0:61 : 0:21 � 1:63 : 1:23

c-statistic None 0:68 0:65 : 0:71 0:60 : 0:75
AM 0:81 0:78 : 0:84 0:70 : 0:89
ARE 1 0:81 0:78 : 0:84 0:70 : 0:89
ARE 1= 2 0:81 0:79 : 0:84 0:73 : 0:88
ARE 0 0:81 0:79 : 0:84 0:71 : 0:89
ASD 0:81 0:79 : 0:84 0:73 : 0:88
AGini 0:81 0:77 : 0:84 0:68 : 0:90

None: Model with no predictor selection, A M : Mean performance; A RE 1 :
Random e�ects meta-analytic estimate of mean of distribution of perfor-
mance; A RE 0 : Random e�ects meta-analytic estimate of heterogeneity
of distribution of performance; A RE 1= 2 : Sum of random e�ects meta-
analytic estimates of mean and heterogeneity of distribution of perfor-
mance; A SD : Standard Deviation; A Gini : Gini's mean di�erence. 95%
CI: 95% con�dence interval; 95% PI: the random e�ects meta-analysis
approximate 95% prediction intervals lower and upper bound.

There was substantial heterogeneity in the estimated calibration slopes, espe-
cially for the prede�ned model with no predictor selection. For all strategies, the
prediction interval for the calibration slope also included values> 1, which implies
that for some (future) clusters the log odds ratios will probably not deviate from 0
enough and that predictions for individuals will probably be not extreme enough.
The heterogeneity of the calibration slope decreased for all strategies, as compared
to the prede�ned model with no added predictors. This means that for the resulting
models there was a decreased need for extensive local updating.

In terms of average calibration intercepts, all strategies achieved a reasonable
calibration in the large, that is close to zero (Table 3.5, Figure 3.2). This means that
on average the incidence was predicted accurately. On the other hand, the meta-
analysis of the calibration intercepts showed that the heterogeneity of calibration in
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Figure 3.1: Forest Plots of SIECV Estimates of Calibration Slopes of Six Strategies
for Predicting DVT

A: Mean performance, A M ; B: Random e�ects meta-analytic estimate of mean of
distribution of performance, A RE 1 ; C: Random e�ects meta-analytic estimate of
heterogeneity of distribution of performance, A RE 0 ; D: Sum of random e�ects meta-
analytic estimates of mean and heterogeneity of distribution of performance, A RE 1= 2 ;
E: Standard Deviation, A SD ; F: Gini's mean di�erence, A Gini .
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Figure 3.2: Forest Plots of SIECV Estimates of Calibration Intercepts of Six
Strategies for Predicting DVT

A: Mean performance, A M ; B: Random e�ects meta-analytic estimate of mean of
distribution of performance, A RE 1 ; C: Random e�ects meta-analytic estimate of
heterogeneity of distribution of performance, A RE 0 ; D: Sum of random e�ects meta-
analytic estimates of mean and heterogeneity of distribution of performance, A RE 1= 2 ;
E: Standard Deviation, A SD ; F: Gini's mean di�erence, A Gini .
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Figure 3.3: Forest Plots of SIECV Estimates of c-statistics of Six Strategies for
Predicting DVT

A: Mean performance, A M ; B: Random e�ects meta-analytic estimate of mean of
distribution of performance, A RE 1 ; C: Random e�ects meta-analytic estimate of
heterogeneity of distribution of performance, A RE 0 ; D: Sum of random e�ects meta-
analytic estimates of mean and heterogeneity of distribution of performance, A RE 1= 2 ;
E: Standard Deviation, A SD ; F: Gini's mean di�erence, A Gini .
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the large had increased for all modeling strategies, as compared to the prede�ned
model with no added predictors. Hence, a trade-o� occurred between (heterogeneity
of) calibration slopes and intercepts, and local updating of the intercept will remain
necessary.

All strategies that applied SIECV achieved an internally-externally validated
c-statistic value of 0.81 (Table 3.5 and Figure 3.3). There were small di�erences in
heterogeneity of discrimination performance. TheASD strategy and the strategies
that included the meta-analytic estimate of heterogeneity had smaller values for the
heterogeneity of the internally-externally validated c-statistic, than the strategies
that focused on the mean performance alone (AM and ARE 1 ). Further, the AGini

strategy, a non-meta-analytic strategy that focuses on heterogeneity of performance,
yielded larger heterogeneity of discrimination performance.

As a �nal step, one must choose which modelling strategy is most likely to
yield adequate performance when applied to individuals in a new cluster, if any.
Although heterogeneity in the slopes had decreased substantially for all strategies,
the prediction intervals still indicated that updating may be necessary. Further, the
models resulting from all strategies are likely to need an intercept update. In terms
of calibration, it may therefore not be advisable to develop a global model, that
is a model developed on all available clusters (without leaving any out). Finally,
although the discrimination for all models improved substantially, the diagnostic
utility would have to be put into a clinical perspective.

3.5 Motivating example 3: Predicting atrial �bril-
lation

Patients with atrial �brillation (AF) are at an increased risk for stroke. [250] Al-
though stroke is usually not fatal, it often results in neurological de�ciencies. [251]
In patients with AF the incidence of stroke as well as the incidence of death from
stroke can be greatly reduced by oral anticoagulation. [252]

For illustrative purposes, we here consider the development and validation of a
binary logistic prediction model to estimate the probability that atrial �brillation
is present in an individual patient. Previously, Audigier et al prepared a simulated
dataset to mimic the patients from 28 cohorts (clusters, from hereon) of the GREAT
consortium. [253, 254] This dataset comprises a total of 11685 patients of which
3335 have AF.

Because some of the clusters are very small and may thereby cause estimation
issues during model development or validation, we removed a total of 8 clusters in
which fewer than 50 patients had the outcome or did not have the outcome. Missing
values were imputed once using a joint model with random e�ects. [255, 229] We
subsequently modeled the probability of the presence of atrial �brillation in 10873
patients from the remaining 20 clusters (Table 3.6). To further prevent over�tting,
we applied Firth's correction, [99] and re-estimated the intercepts with unpenalized
maximum likelihood. [240]
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Table 3.6: Clinical Characteristics of AF Data

Outcome: AF No Yes Total

Gender 0 4583 (71.3) 1844 (28.7) 6427
1 3059 (68.8) 1387 (31.2) 4446

BMI Mean (SD) 27.3 (5.7) 27.4 (5.8) 27.4 (5.7)
Age Mean (SD) 67.7 (14.1) 73.1 (13.1) 69.3 (14.0)
SBP Mean (SD) 135.6 (32.2) 135.3 (32.1) 135.5 (32.2)
DBP Mean (SD) 78.6 (18.3) 79.1 (18.4) 78.7 (18.3)
HR Mean (SD) 88.0 (25.0) 96.4 (29.0) 90.5 (26.5)
BNP Mean (SD) 3.0 (0.9) 2.9 (1.0) 2.9 (0.9)

We considered 7 candidate predictors, consisting of gender (binary) and 6 con-
tinuous predictors : body mass index (BMI), age, systolic blood pressure (SBP), di-
astolic blood pressure (DBP), heart rate (HR) and brain natriuretic peptide (BNP).
BMI, age, and HR were divided by 25, and SBP and DBP by 100 to increase the
absolute values of their coe�cients. For the continuous predictors, we considered
linear and quadratic terms and applied centering (within clusters) before applica-
tion of the quadratic function. This was necessary to ensure that the coe�cients
are stabilized and positive coe�cients for quadratic terms represent an increased
probability of presence of AF for values that deviate from the mean value.

Here, we implement the proposed predictor selection procedures to illustrate
their impact on average performance as well as on generalizability across the di�er-
ent clusters. We follow the SIECV strategy for model development as described in
section 3.3, apply the MSE to the predicted probabilities in the hold-out clusters
and apply the aggregated loss functions on the MSE estimates and standard errors
thereof, to select predictors functions as we outlined in section 3.3.2.

The six applied aggregated loss functions lead to three di�erent model speci�-
cations (Table 3.7), as the strategy that ignores clustering when quantifying gener-
alizability ( AM ) and the strategy that optimized the meta-analytic mean of perfor-
mance (ARE 1 ) lead to the same model speci�cation. Further, both meta-analytic
strategies that included heterogeneity of performance (ARE 1= 2 and ARE 0 ) lead to
the same model, as well as the strategies that directly quanti�ed heterogeneity of
performance (ASD and AGini ). Again, we assessed performance with the calibration
slope, calibration intercept and c-statistic, and summarized these and the hetero-
geneity thereof with univariate random e�ects meta-analyses.
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Table 3.7: Estimated Regression Coe�cients of Seven Models for Pre-
dicting AF Estimated with SIECV

Predictor AM ARE 1 ARE 1= 2 ARE 0 ASD AGini

Intercept � 0:87 � 0:87 � 0:84 � 0:84 � 0:81 � 0:81
Gender � 0:08 � 0:08
Age/25 0:75 0:75 0:59 0:59 0:62 0:62
(Age/25) 2 � 0:17 � 0:17
HR/25 0:29 0:29
SBP/100 � 0:59 � 0:59
(SBP/100)2 0:28 0:28
(BMI/25) 2 0:37 0:37 0:32 0:32 0:32 0:32
BNP2 0:03 0:03 0:03 0:03

A M : Mean performance; A RE 1 : Random e�ects meta-analytic estimate of mean of
distribution of performance; A RE 0 : Random e�ects meta-analytic estimate of hetero-
geneity of distribution of performance; A RE 1= 2 : Sum of random e�ects meta-analytic
estimates of mean and heterogeneity of distribution of performance; A SD : Standard
Deviation; A Gini : Gini's mean di�erence.
HR: heart rate, SBP: systolic blood pressure, BMI: Body mass index, BNP: brain
natriuretic peptide.
Empty cells indicate the predictor was not selected for inclusion in the corresponding
model.
Summary predictor e�ects were estimated by the Dersimonian and Laird method,
as REML did not converge for the estimation of some models. Although REML has
better theoretical properties for the heterogeneity estimate, the di�erence for the
summary e�ects (presented here) is limited.

In terms of summary calibration slopes (estimated with Firth's correction and
then pooled in a meta-analysis), all strategies were rather well calibrated, showing
only minor over�t (Table 3.8, Figure 3.4). However, there was substantial hetero-
geneity of the calibration slopes. The approximate 95% prediction interval of the
calibration slopes of the models for theAM and ARE 1 were the widest, as the upper
bound reached 2.20 and the lower bound was estimated at a -0.24. This negative
value for the lower bound implies that the predictive e�ect for the models might be
reversed in some clusters: individuals with AF received lower probabilities of AF
than individuals without AF in these clusters. This means that for each of these
models, there was still a need for extensive updating or model redevelopment.
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Table 3.8: Meta-Analysis Summary Estimates of SIECV
Performance of Six Strategies for Predicting AF

Measure Strategy ARE 1 95% CI 95% PI

Calibration AM 0:98 0:70 : 1:27 � 0:24 : 2:20
slope ARE 1 0:98 0:70 : 1:27 � 0:24 : 2:20

ARE 1= 2 0:98 0:74 : 1:23 0:03 : 1:94
ARE 0 0:98 0:74 : 1:23 0:03 : 1:94
ASD 0:95 0:70 : 1:20 � 0:02 : 1:91
AGini 0:95 0:70 : 1:20 � 0:02 : 1:91

Calibration AM 0:04 � 0:24 : 0:33 � 1:25 : 1:34
intercept ARE 1 0:04 � 0:24 : 0:33 � 1:25 : 1:34

ARE 1= 2 0:00 � 0:28 : 0:29 � 1:28 : 1:28
ARE 0 0:00 � 0:28 : 0:29 � 1:28 : 1:28
ASD 0:00 � 0:28 : 0:29 � 1:28 : 1:28
AGini 0:00 � 0:28 : 0:29 � 1:28 : 1:28

c-statistic AM 0:62 0:58 : 0:65 0:46 : 0:75
ARE 1 0:62 0:58 : 0:65 0:46 : 0:75
ARE 1= 2 0:58 0:56 : 0:60 0:51 : 0:65
ARE 0 0:58 0:56 : 0:60 0:51 : 0:65
ASD 0:58 0:56 : 0:60 0:49 : 0:66
AGini 0:58 0:56 : 0:60 0:49 : 0:66

A M : Mean performance; A RE 1 : Random e�ects meta-analytic estimate
of mean of distribution of performance; A RE 0 : Random e�ects meta-
analytic estimate of heterogeneity of distribution of performance; A RE 1= 2 :
Sum of random e�ects meta-analytic estimates of mean and heterogeneity
of distribution of performance; A SD : Standard Deviation; A Gini : Gini's
mean di�erence. 95% CI: 95% con�dence interval; 95% PI: the random
e�ects meta-analysis approximate 95% prediction intervals lower and up-
per bound.

In terms of average calibration intercepts, the calibration in the large was (near)
perfect (Table 3.8 and Figure 3.5). TheARE 1= 2 , ARE 0 , ASD and AGini strategies all
achieved a calibration intercept of 0.00 (95% CI: -0.28 to 0.29), whereas those of
AM and ARE 1 were hardly di�erent with 0.04 (95% CI: -0.24 to 0.33). Again, there
was large heterogeneity in calibration in the large, as shown by the approximate
95% prediction intervals of the calibration intercepts. This means that for each of
these models there was still a need for intercept updating they may be used.

The AM and ARE 1 strategies attained a somewhat better discrimination with
c-statistics of 0.62 (95% CI: 0.58 to 0.65) than the other strategies, that all attained
c-statistics of 0.58 (95% CI: 0.56 to 0.60), respectively (Table 3.8 and Figure 3.6).
There was considerable heterogeneity in the c-statistics for all strategies. The dis-
crimination was worse than random (c-statistic < .50) in at least one cluster for
each of the strategies. Indeed, the approximate 95% prediction interval shows it is
most likely that this will occur in a new cluster for the AM and ARE 1 strategies.
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Figure 3.4: Forest Plots of SIECV Estimates of Calibration Slopes of Six Strategies
for Modeling AF

A: Mean performance, A M ; B: Random e�ects meta-analytic estimate of mean of
distribution of performance, A RE 1 ; C: Random e�ects meta-analytic estimate of
heterogeneity of distribution of performance, A RE 0 ; D: Sum of random e�ects meta-
analytic estimates of mean and heterogeneity of distribution of performance, A RE 1= 2 ;
E: Standard Deviation, A SD ; F: Gini's mean di�erence, A Gini .
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