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ABSTRACT
Rationale: Limited health literacy (HL) leads to poor health outcomes, psychological stress, and misutilization of medical

resources. Although interventions aimed at improving HL may be effective, identifying patients at risk of limited HL in the clinical

workflow is challenging. With machine learning (ML) algorithms based on readily available data, healthcare professionals would

be enabled to incorporate HL screening without the need for administering in‐person HL screening tools.

Aims and Objectives: Develop ML algorithms to identify patients at risk for limited HL in spine patients.

Methods: Between December 2021 and February 2023, consecutive English‐speaking patients over the age of 18 and new to an

urban academic outpatient spine clinic were approached for participation in a cross‐sectional survey study. HL was assessed

using the Newest Vital Sign and the scores were divided into limited (0–3) and adequate (4–6) HL. Additional patient

characteristics were extracted through a sociodemographic survey and electronic health records. Subsequently, feature selection

was performed by random forest algorithms with recursive feature selection and five ML models (stochastic gradient boosting,

random forest, Bayes point machine, elastic‐net penalized logistic regression, support vector machine) were developed to

predict limited HL.

Results: Seven hundred and fifty‐three patients were included for model development, of whom 259 (34.4%) had limited HL.

Variables identified for predicting limited HL were age, Area Deprivation Index‐national, Social Vulnerability Index, insurance

category, Body Mass Index, race, college education, and employment status. The Elastic‐Net Penalized Logistic Regression algorithm

achieved the best performance with a c‐statistic of 0.766, calibration slope/intercept of 1.044/−0.037, and Brier score of 0.179.

Conclusion: Elastic‐Net Penalized Logistic Regression had the best performance when compared with other ML algorithms

with a c‐statistic of 0.766, calibration slope/intercept of 1.044/−0.037, and a Brier score of 0.179. Over one‐third of patients

presenting to an outpatient spine center were found to have limited HL. While this algorithm is far from being used in clinical

practice, ML algorithms offer a potential opportunity for identifying patients at risk for limited HL without administering

in‐person HL assessments. This could possibly enable screening and early intervention to mitigate the potential negative

consequences of limited HL without taxing the existing clinical workflow.
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cited.
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1 | Introduction

Health literacy (HL) is defined as a person's capacity to acquire,
interpret, and apply information related to their medical
conditions, general health, treatments, and long‐term care [1].
A previous study by our study group shows that up to 36%
of orthopaedic spine patients are considered to have limited
HL [2]. Limited HL can lead to poor health outcomes, such as
increased hospitalization and higher mortality, psychological
stress, and misutilization of medical resources [3–8]. More
specifically, orthopaedic spine patients with limited HL have
worse baseline patient‐reported outcome measurement scores
and lower health‐related quality of life [9, 10].

Interventions aimed at improving HL are moderately effective,
especially in socioeconomically disadvantaged groups [11, 12].
However, identifying patients at risk of limited HL in the
clinical workflow is challenging since it requires adminis-
tering HL screening tools. While it is possible to incorporate
routine HL screening into the clinical workflow, issues
such as low compliance and high variability lead to less
reliable results [13, 14]. Moreover, healthcare professionals
may experience additional strain in administering these
questionnaires given their existing workload.

Before and during a patient's consultation with a physician,
a substantial amount of information is already being docu-
mented. This includes basic personal information, such as
age, height, and weight, as well as a patient's address and
insurance plan. This data can be employed more efficiently to
predict a patient's HL status when compared with more tra-
ditional HL screening tools since this data does not require
additional effort or resources to be collected. While machine
learning (ML) algorithms are becoming increasingly acces-
sible, we sought to explore the potential of these algorithms
in predicting which patients are more likely to possess
limited HL with data that is already available or easy to
obtain. In this way, healthcare professionals would be
enabled to incorporate HL screening methods into the
clinical workflow, without the need for administering
lengthy and time‐consuming questionnaires. To our knowl-
edge, no ML algorithm to screen for limited HL exists to date.

Therefore, this study aims to develop a ML prediction model
to identify patients with limited HL, exploring the potential
of ML in this field and to serve as a first proof‐of‐concept for
further algorithm development.

2 | Methods

2.1 | Guidelines

Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) and Guidelines
for Developing and Reporting Machine Learning Models in
Biomedical Research were followed [15, 16].

2.2 | Data Source

Two datasets from other studies by our research group
were combined to have sufficient data to train ML algorithms
(Figure 1). Both datasets contain prospectively collected patient
data which was gathered under the approval of our institutional
review board between December 2021 and March 2022 (Dataset
A) and October 2022 and February 2023 (Dataset B) at a tertiary
urban academic medical centre in the United States. The data
was acquired by verbally administering surveys and through
patients' electronic health records (Epic).

2.3 | Study Population

The inclusion and exclusion criteria were identical in both
studies. Patients over 18 years of age and new to the outpatient
spine clinic were approached by trained research study staff for
inclusion in the study during their first visit to the clinic, either
before or after the consultation with their physician. Patients
were excluded if they were visually impaired, did not consider
themselves fluent in English, needed a sign language inter-
preter, were unable to provide informed consent, or declined
participation. Verbal informed consent was obtained before any
study procedures.

FIGURE 1 | Flowchart of inclusion‐ and exclusion criteria in the combined datasets A and B. *Reason not further specified.
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2.4 | Outcome Measures and Explanatory
Variables

Consenting patients were asked to verbally complete a socio-
demographic survey and the Newest Vital Sign (NVS) HL
assessment in both studies. HL was the primary outcome as
defined by the NVS, a validated tool to assess both HL and
numeracy [17, 18]. It consists of a nutritional label accompanied
by six questions (Supporting Information S1: Appendix I). A score
of 0–1 indicates a high likelihood (50% or more) of limited HL, a
score of 2–3 indicates a possibility of limited HL, and a score of
4–6 almost always indicates adequate HL. These scores were
reduced to two categories to optimize sensitivity and specificity:
limited HL (score 0–3) and adequate HL (score 4–6) [18]. This
categorization has been employed in other orthopaedic popula-
tions, including hand and spine patients [19, 20].

Variables collected in the sociodemographic survey in both
studies were ethnicity, race, employment status, educational
attainment, annual household income, current marital status,
housing status, and housing insecurity. Other variables were
collected through manual chart review: sex, age, Body Mass Index
(BMI), insurance status, smoking status, and alcohol use at the
date of enrollment. Housing insecurity was defined as: ‘Being
worried or concerned about not having a place to live in the
past 6 months’. Alcohol use was categorized as alcohol risk:
> 2 alcoholic drink equivalents in a day for men or > 1 in a day
for women [21]. Additionally, the Social Vulnerability Index (SVI)
and Area Deprivation Index (ADI) were extracted using online
mapping tools based on individual patient addresses [22, 23]. The
ADI is based on census variables that reflect socioeconomic status
and is represented as national percentile and state decile [22].
The SVI, developed by the Centers for Disease Control and
Prevention, utilizes census variables to help identify communities
that may need support before, during, or after disasters. SVI
scores can be categorized into four categories: low (< 0.25), low‐
medium (≥ 0.25–< 0.50), medium‐high (≥ 0.50–< 0.75), and high
(≥ 0.75) [23].

2.5 | Predictors

The following variables were selected as potential predictors for
training algorithms based on their accessibility in patient charts or
ease of being obtained during normal physician‐patient interac-
tion: age (continuous), sex (male/female), ADI national percentile
(continuous), SVI (low/low‐medium/medium‐high/high), insur-
ance category (public/private), smoking status (active/former/
nonsmoker) alcohol risk (yes/no), BMI (continuous), race (White/
non‐White), ethnicity (Hispanic or Latino/not), college education
(yes/no), employment (employed/not employed), and marital
status (married/not married). HL category was the dependent
variable in this investigation.

2.6 | Missing Data

Rates of missing data for variables were as follows: BMI= 19
(2.5%), insurance category = 4 (0.5%), college education = 1
(0.1%), smoking status = 68 (9.0%), and alcohol consumption=
226 (30.0%). Multiple imputation was performed with the

missForest package in Python software to impute variables with
less than 30% missing data. This method is a nonparametric
imputation method that utilizes a random forest algorithm to
estimate missing values based on observed values in the data set
[24]. Alcohol consumption was removed as a potential predictor
due to the amount of missing data.

2.7 | Statistical Analysis

Descriptive statistics were used to summarize the data and
to compare the patient characteristics of patients with limited
HL and adequate HL (Table 1). Shapiro–Wilks tests were used
to check for normality. Since the only continuous variable
‘Age in years’ did not follow a normal distribution, it was re-
ported using median and interquartile range (IQR). Categorical
variables were reported as frequencies and percentages. A
Mann–Whitney U test was performed on the continuous vari-
able to evaluate the difference between groups. For categorical
variables, χ2 tests were conducted. A p value of < 0.05 was
considered statistically significant.

2.8 | Model Development

The available data were divided into a training and testing set
with a stratified 70:30 split. Feature selection was performed by
random forest algorithms with recursive feature selection [25].
Five supervised ML algorithms (stochastic gradient boosting,
random forest, Bayes point machine, elastic‐net penalized
logistic regression, support vector machine) were developed
with the subset of variables in the training set [26–29]. Model
performance was assessed on the training set by bootstrapping
algorithm creation 1000 times and taking the means and
95% confidence intervals of the performance metrics. Model
performance was also assessed in the independent testing set,
which was not used for algorithm development. The metrics
used for algorithm assessment were discrimination (c‐statistic),
calibration (calibration slope and intercept), and overall
performance (Brier score).

Discrimination assesses the model's capacity to distinguish
between patients with inadequate and adequate HL and was
evaluated graphically using the receiver operating curve and
numerically using the c‐statistic, also known as the area under
the receiver operating curve (AUC) for binary classification
[30–33]. Models that achieve perfect discrimination have a c‐
statistic of 1, while models with performance no better than
chance have a c‐statistic of 0.5.

Calibration refers to how well the predicted probabilities of the
model concur with the observed probabilities in the study
population and was assessed graphically with calibration plots
and numerically with calibration slope and intercept [32, 33].
The calibration slope quantifies the difference between predic-
tor effects for each model. A calibration slope larger than 1
indicates that predictions are overly extreme, overpredicting
high‐risk patients and underestimating low‐risk patients.
The calibration intercept assesses whether the model has a
tendency to overestimate or underestimate the probability of
the outcome. A positive calibration intercept indicates general
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TABLE 1 | Patient characteristics stratified by HL level.

Health literacy

Total Limited (NVS≤ 3) Adequate (NVS> 3)
753 (100%) 259 (34.4%) 494 (65.6%) p value

Age in years, median (IQR) 57 (42–69) 65 (51–74) 53 (38–65) < 0.001

Sex 0.525

Male 358 (47.5) 119 (45.9) 239 (48.3)

Female 395 (52.5) 140 (54.1) 255 (51.6)

BMI categorya 0.916

Underweight (< 18.5) 10 (1.3) 4 (1.5) 6 (1.2)

Healthy weight (≥ 18.5–< 25.0) 236 (31.3) 81 (31.3) 155 (31.4)

Overweight (≥ 25.0–< 30.0) 296 (39.3) 100 (38.6) 196 (39.7)

Obese (≥ 30.0) 211 (28.0) 74 (28.6) 137 (27.7)

Race < 0.001

White 630 (83.7) 194 (74.9) 436 (88.3)

Black or African American 36 (4.8) 28 (10.8) 8 (1.6)

Hispanic or Latino 23 (3.1) 15 (5.8) 8 (1.6)

Asian 46 (6.1) 14 (5.4) 32 (6.5)

Other 18 (2.4) 8 (3.1) 10 (2.0)

Ethnicity < 0.001

Not Hispanic or Latino 721 (95.8) 239 (92.3) 482 (97.6)

Hispanic or Latino 32 (4.2) 20 (7.7) 12 (2.4)

Area Deprivation Index, median (IQR)

State decile 3 (1–6) 4 (2–6) 3 (1–5) < 0.001

National percentile 14 (7–24) 18 (9–26) 12 (6–23) < 0.001

SVI category < 0.001

Low (< 0.25) 322 (42.8) 94 (36.3) 228 (46.2)

Low‐medium (≥ 0.25–< 0.50) 208 (27.6) 60 (23.2) 148 (30.0)

Medium‐high (≥ 0.50–< 0.75) 131 (17.4) 53 (20.5) 78 (15.8)

High (≥ 0.75) 92 (12.2) 52 (20.1) 40 (8.1)

Insurance statusa,b < 0.001

Public 319 (42.4) 167 (64.5) 152 (30.8)

Private 434 (57.6) 92 (35.5) 342 (69.2)

Educationa < 0.001

College education or more 562 (74.6) 147 (56.8) 415 (84.0)

No college education 191 (25.4) 112 (43.2) 79 (16.0)

Employed versus not employedc < 0.001

Employed 448 (59.5) 101 (39.0) 347 (70.2)

Not employed 305 (40.5) 158 (61.0) 147 (29.8)

Married versus not married < 0.001

Married or with partner 428 (56.8) 115 (44.4) 313 (63.4)

Not married or with partner 325 (43.2) 144 (55.6) 181 (36.6)

Smoking statusa 0.003

Never smoked 460 (61.1) 140 (54.1) 320 (64.8)

Former smoker 223 (29.6) 84 (32.4) 139 (28.1)

Active smoker 70 (9.3) 35 (13.5) 35 (7.1)

(Continues)
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overestimation of predictions by the model. Perfect models have
a calibration intercept of 0 and a calibration slope of 1.

Overall model performance was assessed with the Brier score,
the mean squared error between predicted probabilities and
observed values [33, 34]. It combines discrimination and cali-
bration metrics to serve as a benchmark for overall model
performance [33]. The null model Brier score assigns a pre-
dicted probability for all patients equal to the prevalence of
limited HL. This establishes a baseline for comparison, enabling
the assessment of the predictive accuracy of the model. Brier
scores closer to zero have a lower error between predictions and
observed values, indicating better model performance.

Decision curve analysis was performed to evaluate the clinical
utility of the model by plotting the net benefit of using the
model to make clinical decisions against the net benefit of
assuming that all patients have limited HL [35, 36]. This
method is useful for examining the utility of prediction models
and balances the potential benefit of true positive predictions
against the potential harm of false positive and false negative
predictions over a range of probability thresholds.

All statistical analyses were performed using Python version
3.9.12 (Python Software Foundation) programming language.

3 | Results

Nine hundred and twenty‐four patients were approached for
inclusion in this study, of which 81 patients (8.8%) were ex-
cluded because they were not fluent in English, were visually
impaired, or needed a sign language interpreter. Of the
remaining 843 patients, 90 (10.7%) declined participation due to
lack of time or no interest (Figure 1), resulting in a response
rate of 89%. In total, 753 patients were included for model
development, of whom 259 (34.4%) had limited HL. In uni-
variate analysis, patients with limited HL were more likely to be
older, Hispanic/Black, have a higher BMI, live in an area with
higher deprivation, have public health insurance, have less than
college education, and be unemployed (Table 1).

Random forest algorithms identified age, ADI‐national, SVI,
insurance category, BMI, race, college education, and employ-
ment status as predictive factors for limited HL. C‐statistics of
all models were largely similar in cross‐validation of the

training set (n= 527) and ranged from 0.768 for Support Vector
Machine to 0.839 for Stochastic Gradient Boosting (Table 2).
The best‐performing model for predicting limited HL based on
discrimination alone was Stochastic Gradient Boosting with a c‐
statistic of 0.839. Calibration slopes ranged from 0.669 for Bayes
Point Machine to 1.682 for Random Forest and calibration
intercepts ranged from –0.451 for Random Forest to 0.251 for
Bayes Point Machine. Brier scores ranged from 0.160 for Sto-
chastic Gradient Boosting to 0.188 for Bayes Point Machine. In
comparison, the null model Brier score was 0.226.

Model performance in the independent testing set (n= 226)
resulted in c‐statistics ranging from 0.744 for Support Vector
Machine to 0.788 for Bayes Point Machine (Table 3). Calibration
slopes ranged from 0.647 for Bayes Point Machine to 1.389 for
Random Forest and calibration intercepts ranged from –0.260
for Random Forest to 0.264 for Bayes Point Machine. Brier
scores ranged from 0.179 for Elastic‐Net Penalized Logistic
Regression to 0.188 for Bayes Point Machine. The null Brier
score for the independent testing set was 0.226 as well.

Elastic‐Net Penalized Logistic Regression was chosen as the
final model with superior performance on calibration and
overall assessment. Upon evaluation in the testing set, the
model had a c‐statistic of 0.766 (Figure 2), calibration slope of
1.044 and calibration intercept of −0.037 (Figure 3), and Brier
Score of 0.179. Decision curve analysis for the Elastic‐Net
Penalized Logistic Regression model revealed that changing
management based on the model would yield greater net ben-
efit than a changing management for all patients or no patients
(Figure 4).

4 | Discussion

HL refers to an individual's ability to access, understand, and
utilize health information and services to make informed
decisions and manage their own health effectively [1]. The goal
of this study was to create a practical method to screen patients
for limited HL, without creating an additional burden for
patients or healthcare professionals. Our findings show that ML
algorithms can predict which patients exhibit limited HL with
data that is readily available in patients' charts or can be easily
obtained during a patient's visit. However, our algorithm is far
from finalized and should serve more as a proof of concept
instead of a clinically useful model.

TABLE 1 | (Continued)

Health literacy

Total Limited (NVS≤ 3) Adequate (NVS> 3)
753 (100%) 259 (34.4%) 494 (65.6%) p value

Alcohol risk 0.030

Yes 194 (25.8) 56 (21.6) 138 (27.9)

No 333 (44.2) 127 (49.0) 206 (41.7)

Missing 226 (30.0) 76 (29.3) 150 (30.4)

Note: n (%) unless stated otherwise. Boldface type indicates statistical significance (p< 0.05).
aImputed missing values: BMI (n= 19), insurance (n= 4), education (n= 1), smoking status (n= 68).
bPublic insurance: Medicaid, Medicare, or MassHealth; Private insurance: any other health insurance.
cEmployed includes being (self‐)employed or student; Not employed includes retired, unemployed, or unable to work/disabled.
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A study utilizing natural language processing and ML to classify
HL from secure communication between patients and health-
care providers demonstrated that these algorithms can as well,
with modest accuracy, predict limited HL [37]. However, their
suggested method is complicated to incorporate into the
clinical workflow since it relies heavily on the use of secured
messaging systems for patient–provider interactions, which are
not always available. The variables used to develop algorithms
in this study are already available or easy to obtain, which
makes it a more feasible method to apply in practice.

Accurately identifying patients with limited HL would enable
healthcare professionals to tailor care to a patient's specific
needs instead of a one‐size‐fits‐all approach. Interventions tar-
geting HL can lead to changes in health behavior and thereby
improve outcomes for populations most at risk for health
inequality [12]. A study by Kee et al. demonstrated that tailor-
ing preoperative education and postoperative instructions to a
patient's level of HL can significantly impact postoperative
outcomes [38]. Furthermore, limited HL leads to avoidable
waste of medical resources. A study in patients with degener-
ative lumbar disease found that patients with limited HL were
more likely to overutilize more expensive drugs and select
invasive interventions before exhausting less costly and more
conservative measures [4].

In an ideal situation, an externally validated algorithm tested on
a substantially larger population could serve as a great tool to
predict limited HL. However, this is not yet the case. As of now,
gathering the required information to run the algorithm would
be more time consuming than just administering the NVS in the
first place. Further development of algorithms may, however,
result in clinically useful tools in the future. This study

reinforces the notion that creating such tools could be feasible.
These tools would ensure clinicians do not need to administer
lengthy and time‐consuming questionnaires, which are prone to
error when administered by untrained professionals [13, 14].
Therefore, future studies should focus on increasing the sample
size on which the algorithm is trained and should ideally
include internal and external validation to ensure their findings
are generalizable in other populations as well.

4.1 | Limitations

There are limitations to this study. One notable limitation of
this study is the absence of external validation for the developed
model. While the internal validation procedures employed
within the study provide insights into the performance and
generalizability of the model within the data set used for
training and testing, the lack of external validation introduces
an element of uncertainty regarding the model's applicability to
other populations.

Second, all patients were seen at a single institution. The de-
mographics of this study's population with predominantly
White and well‐educated patients with above‐average house-
hold income may not be representative of other areas, which
may lead to challenges with the generalizability and usefulness
of this algorithm in areas with a different population.

Third, the ML models used in this study were optimized for
predicting limited HL accurately, but not for explaining the
independent effect of individual factors. The model parameters
cannot be employed for explanatory purposes of the indepen-
dent effect of the variables on HL. However, preceding work by

TABLE 3 | Algorithm performance in independent testing set (95% confidence interval), n= 226.

Metric
Stochastic gradient

boosting Random forest
Support vector

machine
Bayes point
machine

Elastic‐net
penalized logistic

regression

AUC 0.76 (0.69, 0.79) 0.77 (0.71, 0.82) 0.74 (0.69, 0.80) 0.79 (0.74, 0.84) 0.77 (0.71, 0.82)

Calibration
intercept

−0.24 (−0.38, −0.04) −0.26 (−0.60, 0.20) 0.03 (−0.23, 0.30) 0.26 (0.18, 0.37) −0.04 (−0.22, 0.15)

Calibration slope 1.32 (1.04, 1.54) 1.39 (0.70, 1.89) 0.93 (0.45, 1.32) 0.65 (0.46, 0.82) 1.04 (0.76, 1.31)

Brier score 0.18 (0.18, 0.19) 0.19 (0.17, 0.20) 0.19 (0.18, 0.21) 0.19 (0.17, 0.21) 0.18 (0.16, 0.20)

Note: Null model Brier score = 0.23.
Abbreviation: AUC, area under the receiver operating curve.

TABLE 2 | Algorithm performance in on cross‐validation of training set (95% confidence interval), n= 527.

Metric
Stochastic

gradient boosting
Random
forest

Support vector
machine

Bayes point
machine

Elastic‐net penalized
logistic regression

AUC 0.84 (0.83, 0.85) 0.82 (0.80, 0.84) 0.77 (0.74, 0.79) 0.78 (0.76, 0.80) 0.78 (0.75, 0.80)

Calibration
intercept

−0.39
(−0.44, −0.34)

−0.45
(−0.54, −0.32)

−0.01
(−0.08, 0.10)

0.25 (0.21, 0.30) −0.06 (−0.10, 0.00)

Calibration slope 1.59 (1.51, 1.66) 1.68 (1.49, 1.81) 0.99 (0.74, 1.14) 0.67 (0.59, 0.75) 1.08 (1.00, 1.14)

Brier score 0.16 (0.16, 0.17) 0.17 (0.16, 0.18) 0.19 (0.18, 0.20) 0.19 (0.18, 0.20) 0.17 (0.16, 0.18)

Note: Null model Brier score = 0.23.
Abbreviation: AUC, area under the receiver operating curve.
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our study group employed logistic regression on a part of the
data used for this study for explanatory purposes [2].

Another limitation of this study is that we did not perform a
formal sample size calculation, which is typically not standard
practice in ML studies of this nature. Our study included 753
patients for model selection, which provides a solid foundation

for a proof‐of‐concept investigation. However, it's important to
note that this study was not designed to validate the model for
immediate clinical implementation.

Furthermore, this study uses data from the ADI and SVI, which
are sociodemographic indices specific to the United States, and
as such, the models developed do not seamlessly translate to

FIGURE 2 | Receiver operating curve of elastic‐net penalized logistic regression model for predicting limited health literacy; testing set, n= 226.

AUC, area under the curve.

FIGURE 3 | Calibration curve of elastic‐net penalized logistic

regression model for predicting limited health literacy; testing set,

n= 226.

FIGURE 4 | Decision analysis curve for changing management for

all patients, no patients, and based on the elastic‐net penalized logistic

regression model across threshold probabilities.
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healthcare systems and populations in other countries. The
unique contextual factors influencing HL in diverse global set-
tings may not be adequately captured by the US‐centric indices
utilized in this study.

As a tertiary spine centre, selection bias may arise. However, we
believe this bias was effectively mitigated by adhering to the
inclusion and exclusion criteria and selecting patients at ran-
dom. Additionally, the inclusion of patients with both surgical
and nonsurgical interventions increases the generalizability
of our findings to other patient populations. Lastly, response
fatigue should be considered. Although the average duration for
completion of the survey was not measured, the survey took less
10 min to complete in all patients. Therefore, we do not believe
response fatigue influenced our results.

5 | Conclusion

Our study shows that Elastic‐Net Penalized Logistic Regression
had the best performance when compared with other ML
algorithms with a c‐statistic of 0.766, calibration slope of 1.044,
calibration intercept of −0.037, and a Brier score of 0.179. While
this algorithm is far from readily being used in clinical practice
for predicting limited HL, we believe it serves as a decent proof‐
of‐concept with its reasonable accuracy and good calibration.
Future studies should externally validate whether this algo-
rithm is widely applicable to a more diverse US population and
if it can be applied outside the orthopaedic spine population.
Ideally, a more extensively tested an externally validated algo-
rithm with a larger sample size would help healthcare providers
identify patients that may benefit from additional time and/or
educational resources to prevent adverse outcomes in patients
with limited HL, without taxing the clinical workflow.
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