
201

Compartmentalization and persistence of (regulatory) T cells indicates antigen skewing in JIA

7

R Visit 2

R Visit
 1

R Visit 3
L Visit 4

2191

71 41 224

28 55

62 158 84

84 46

156

6178 39681270

L Visit 1 L Visit 2

935

1544

4098254

44 721

252

R Visit 1 R Visit 2

R Visit 3

1326 613176

L Visit 1 L Visit 2

1711

3068

5190432

218 796

740

R Visit 1 L Visit 1

L Visit 2

Patient 1 Patient 2 Patient 3

Patient 4 Patient 5

R Visit 2 R Visit 3
L Visit 4

301

922 1072

349

51 187 82

84 115

35 174 56

18

76 331

328

R Visit 1 R Visit 2

R Visit 3

1023 410310

L Visit 1 L Visit 2

158

587

56267

38 227

263

R Visit 1 L Visit 1

L Visit 2

Patient 1 Patient 2 Patient 3

Patient 4 Patient 5

R Visit
 1

A

B

Supplemental Figure 4. TCR overlap analysis. A Venn diagrams displaying the overlap of all unique 
TCRβ clones, defined by amino acid sequence, for longitudinal SF samples from all patients for Tregs 
and B non-Tregs. 
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Summary of major findings
	 One of the current important outstanding questions in immunology is how the 
immune system can strike the right balance between activation and tolerance, providing 
protection against pathogens while also maintaining body homeostasis. How is this 
balance kept and what molecular mechanisms can cause the immune system to go 
awry, leading to autoimmune disease? To address these questions, high-throughput 
studies of different molecular layers from immune cells in health and disease are needed. 
Therefore, the work presented in this thesis aimed to explore the molecular mechanisms 
contributing to immune cell dysregulation in the autoimmune disease Systemic Sclerosis 
(SSc) using a multi-omics approach. The thesis describes the application of various 
omics techniques to study the epigenomic, transcriptomic and proteomic landscape 
of monocytes, DCs and T cells of SSc patients as well as individuals suffering from 
other rheumatic autoimmune diseases including systemic lupus erythematosus (SLE), 
rheumatoid arthritis (RA), and juvenile idiopathic arthritis (JIA). This chapter summarizes 
the major findings of the research described in this thesis, and discusses the clinical 
implications for SSc, as well as considerations for future studies. 

Molecular alterations priming innate immune cells towards hyper-activation in SSc
	 Cells of the innate immune system, including monocytes and DCs, are crucial 
in sensing danger signals and mounting an effective immune response, but also play 
indispensable roles in the dampening and resolution of inflammation. Moreover, the 
formation of adaptive immune responses is largely instructed by co-stimulatory signals 
provided by these innate immune cells, making them a crucial component that partially 
determines the susceptibility to develop autoimmune disease. Given the evidence for the 
involvement of innate immune cells (including increased frequencies, activated profiles 
and infiltration into skin) in the earliest stages of SSc, even before the onset of fibrosis, 
it has been proposed that these cells are driving factors in disease pathogenesis[1–8]. 
However, this causal relationship remains to be established, as alterations in these 
cells might also be driven by chronic activation after autoimmunity has already been 
established. Nonetheless, it is likely that the dysregulation of innate immune cells in SSc 
is likely a result of altered signaling pathways downstream of a triggered danger-sensing 
receptor. Many regulators are potentially involved in keeping these signaling pathways 
from derailing. These include the recently described class of long non-coding RNAs 
(lncRNAs), as well as histone modifications and other complex networks of immune 
activating and immune regulatory transcription factors, which were further investigated in 
this thesis. 

lncRNAs as novel regulators of immune tolerance in SSc
	 Research from our group and others previously showed that monocytes 
obtained from SSc patients secrete aberrantly high levels of pro-inflammatory and 
pro-fibrotic cytokines upon TLR stimulation as compared to the same cells obtained 
from healthy individuals[9–11]. The data presented in chapter 2 and chapter 3 of this 
thesis show that lncRNAs are important molecules involved in the regulation of these 
TLR mediated cytokine signaling pathways. We identified the lncRNA NRIR (Negative 
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Regulator of the IFN Response) as regulator of IFN responses downstream of TLR4, and 
the lncRNA PSMB8-AS1 as a regulator of cytokine secretion downstream of TLR7/8 in 
monocytes. Both NRIR and PSMB8-AS1 were reproducibly upregulated in monocytes of 
SSc patients compared to healthy monocytes, highlighting lncRNAs as novel molecular 
factors contributing to monocyte dysregulation in SSc. These results show that lncRNAs 
are actively involved in the establishment of peripheral tolerance and have a critical role 
in priming innate immune cells towards a hyper-activated state in SSc. Indeed, recent 
studies have already revealed that lncRNAs act as critical regulators of immune cell 
function and are involved in the maintenance of immune tolerance. As an example, the 
lncRNAs MALAT1 and NEAT1 are described to be involved in the induction of tolerogenic 
DCs[12, 13], as well as the skewing of monocytes towards distinct pro-inflammatory 
states[14, 15]. These studies further underline the potential for lncRNAs in the priming 
and activation of immune cells, and highlight their roles as novel tolerance regulators. 

Histone modifications: rewiring the immune system to a pro-inflammatory state
	 For a long time, the distinct transcriptional programs involved in cellular activation 
and tolerance were thought to be hardwired during differentiation. However, it is becoming 
more and more clear that differentiated immune cells, including monocytes, can be rewired 
through the loss or acquirement of specific histone modifications following exposure to 
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular 
patterns (DAMPs)[16]. What makes these epigenomic changes especially interesting is 
that, as opposed to other cell signaling transducers such as phosphorylation, they can 
persist long after the initial stimulus is eliminated, and can even be stably transmitted 
throughout cell divisions[17]. This phenomenon is often referred to as ‘trained immunity’, 
and normally confers resistance to secondary infections. In chapter 4 of this thesis we 
observed an increased deposition of activating histone marks at the promoters of genes 
relevant for disease specific pro-inflammatory pathways in monocytes of SSc, SLE and 
RA patients, demonstrating that epigenomic modifications contribute to the rewiring of 
monocytes in these patients. This rewiring, or epigenomically mediated trained immunity, 
might be induced by DAMPs as a result of tissue damage early in disease pathogenesis. 
Indeed, various DAMPs have already been associated with the induction of trained 
immunity in immune related disorders, including oxidized low-density lipoprotein (oxLDL) 
in atherosclerosis[18] and uric acid in gout[19]. In SSc, it would be interesting to study to 
what extent DAMPs released upon vascular damage (one of the earliest events in SSc 
pathogenesis[20]) are capable of inducing epigenomically mediated trained immunity. 
More knowledge on the exact (early) signals inducing epigenomic rewiring in immune 
cells could help to better understand and potentially reverse this process. 

Immune dysregulation in SSc is not merely driven by enhanced activation, but also 
a loss of negative feedback
	 To limit inflammation and maintain immune tolerance, endogenous negative 
feedback mechanisms are in place. Characterization of these feedback mechanisms can 
help to identify new targets to prevent or reverse excessive inflammation. Therefore, in 
chapter 5, using transcriptomic data of cDCs from healthy donors and SSc, we applied 
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a co-expression network approach as well as transcription factor ChIP-sequencing to 
identify biologically relevant transcriptional regulators contributing to cDC dysregulation 
in SSc. Following this approach, we identified the NR4A (nuclear receptor 4A) subfamily 
(NR4A1, NR4A2, NR4A3), to be strongly involved in transcriptional programs underlying 
cDC dysregulation in SSc. These NR4A receptors are induced by pro-inflammatory 
stimuli and are involved in negative feedback mechanisms to dampen immune responses 
via transcriptional regulation of various genes. Indeed, our functional experiments using 
agonists targeting NR4As showed that they are involved in cytokine production by and 
modulation of T cells activation by cDCs. These data implicate NR4As as important 
negative regulators of immune pathways in cDCs, and NR4A downregulation potentially 
contributes to the dysregulation of cDCs in SSc patients. This demonstrates that immune 
cell dysregulation in SSc is not merely a consequence of enhanced activation but can 
also be attributed to a loss of negative feedback. 

A loss of innate immune tolerance may lead to T cell receptor repertoire skewing 
in SSc
	 In the first part of this thesis, we show that a variety of molecular mechanisms 
may induce a loss of tolerance in the innate immune system in SSc and rewire immune 
cells to a hyper-activated state. The resulting inflammatory milieu may provide a 
perfect niche for the aberrant activation expansion of antigen specific T cell clones that 
perpetuate tissue damage and inflammation, further contributing to the pathogenesis 
of SSc. To further investigate this, in the second part of this thesis, the dynamics of the 
T cell repertoire in SSc were studied to better understand the role of antigen specific T 
cell responses in the disease pathogenesis. To this end, in chapter 6, we performed 
high-throughput sequencing of T cell receptors (TCRs) of circulating CD4+ and CD8+ 
T cells from longitudinal samples obtained from SSc patients. Here we show that the 
TCR repertoire in SSc is highly stable over time, and this persistence is likely a result of 
antigenic selection rather than bystander activation. These observations indeed suggest 
that aberrances in the innate immune compartment facilitate the generation of a highly 
oligo clonal T cell repertoire in SSc. In line with this, we show that SSc TCR repertoires are 
less diverse than T cell memory repertoires from healthy individuals, demonstrating that 
T cells are highly clonally expanded in SSc, potentially due to chronic antigen activation. 
To determine to what extent the longitudinal persistence of circulating CD4+ and CD8+ T 
cells are characteristic of SSc, in chapter 7 we studied the immune cell architecture and 
TCR repertoire dynamics of peripheral blood and affected joints of JIA patients. Because 
unlike SSc patients, which are characterized by systemic inflammation, the JIA patients 
included in this study suffered from localized inflammation in the knee joints, we were 
provided with the unique opportunity to compare the T cell landscape of systemic versus 
localized autoimmune disease. Whereas in SSc patients, circulating CD4+ and CD8+ 
T cells were highly clonally expanded (as shown in chapter 6), only T cells obtained 
from affected joints from JIA patients exhibited an expanded profile while circulating T 
cells did not. These results indicate that tissue specific dominant (auto-)antigens in JIA 
patients heavily skew the TCR repertoire, while in SSc, the potential antigens might be 
more ubiquitously expressed. However, it should be noted that in JIA patients, the T cell 
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clones that were found with the highest frequency in affected joints could also be traced 
back in circulation, and the same T cell clones were present in distinctly affected joints 
within one patient, strongly suggesting that reactive clones are recirculating. Additionally, 
JIA patients were characterized by a strong expansion and persistence of regulatory T 
cells (Tregs) rather than effector T cells, whereas in SSc, effector CD4+ and CD8+ T cells 
were highly expanded over time. Thus, T cell activation and expansion in JIA might be 
a result of a failure to suppress autoreactive T cells by Tregs, while in SSc an aberrant 
activation of effector T cells by innate immune cells is more likely to drive T cell hyper 
expansion. However, more detailed investigations of the functional profiles, origins of 
expanded T cell clones, for example through lineage tracking and single cell sequencing, 
are needed to substantiate this hypothesis. 

Novel approaches to target immune cell activation in SSc
	 Considering the importance of innate immune cell activation in SSc 
pathogenesis[21, 22], modulation or inhibition of these cells represents a potential 
therapeutic option to restore immune homeostasis in SSc. However, broad suppression, 
for example through targeting TLRs, may lead to increased infectious disease. Thus, 
the major challenge here is to dampen innate immune signaling pathways to ameliorate 
the immune response just enough, without completely shutting it down. Therefore, the 
modulation of downstream targets regulators that tweak signaling pathways instead of 
abolishing them, represent promising novel therapeutic targets. The studies represented 
in this thesis highlight an important role for novel regulators driving immune cell hyper-
activation in SSc. These include lncRNAs (chapter 2 and 3), histone modifications 
(chapter 4) and immune regulatory transcription factors (chapter 5). Importantly, 
rather than representing binary “on-off” switches, these regulators have subtle immune 
modulatory effects. This makes them potentially relevant clinical targets to help reset 
innate immune cells in SSc towards an immunotolerant state.

lncRNAs: a novel therapeutic option for SSc?
	 Given the immune-regulatory potential of lncRNAs, lncRNA-orientated next-
generation drugs might represent a novel therapeutic avenue for SSc. Indeed, their 
ability to fine-tune the expression of immune-related genes, including cytokines and 
inflammation-related transcription factors as shown in chapter 2 and 3, has potential 
therapeutic implications. The use of antisense oligonucleotide drugs that target ncRNAs 
in other diseases have already been approved by the FDA, and there are various ongoing 
studies for the development of ncRNA-based therapeutics, including testing in animal 
models and clinical trials[23]. An advantage of using such synthetic oligonucleotides 
targeting lncRNAs is that they can very specifically modulate single lncRNA activity as a 
result of their precise sequence complementarity. 
	 However, lncRNAs are still new kids on the block when it comes to the regulation 
of immune responses, and a lot is still to be discovered about this intricate class of 
molecules. Moreover, lncRNA are known to have cell type specific functions, so overall 
targeting might not be desirable. As an example, in chapter 2, we identified the lncRNA 
NRIR as a positive regulator of IFN responses in monocytes, while NRIR has also been 
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described as a negative regulator of IFN responses in hepatocytes[24]. On the other 
hand, this cell-type specificity could also be exploited to modulate lncRNA activity in a 
very targeted way to avoid unwanted side effects. More detailed studies of lncRNAs and 
their effects in different cell types/phenotypes are required to better understand their 
functions. Single-cell sequencing studies might help to gain more insights into the specific 
expression of lncRNAs in various cell types and tissues. These could also be combined 
with knock-out studies to monitor the effect of lncRNA modulation of specific cell types 
within one system. Next to experimental approaches, future studies can be performed 
using computational biology based approaches including lncRNA function prediction 
based on primary sequence, secondary structure conservation or prediction of binding 
partners[25]. Lastly, RNA hybridization-based approaches can be performed to precisely 
dissect the biological targets and molecular mechanisms through which lncRNAs exert 
their functions[26]. Such studies would provide critical insights into the (cell type) specific 
functions of lncRNAs, and further aid their translation into a clinical setting.

Targeting histone modifying enzymes to rewrite the epigenomic code
	 Histone modifying enzymes are critical regulatory proteins that can bind specific 
sites marked by histone acetylation or methylation. They act as writers or erasers 
to increase or decrease the deposition of histone modifications, thereby affecting 
downstream gene expression[27]. Targeting these histone modifying enzymes can help 
to rewrite the epigenomic code and potentially reverse epigenomically mediated trained 
immunity characterizing innate immune cells in SSc. An example of a histone modifying 
enzyme that could hold therapeutic value in SSc is the histone demethylase Jumonji-C 
domain 3 (JMJD3), that specifically removes the inhibiting histone mark H3K27me3[28], 
[29]. Interestingly, a role for JMJD3 in fibroblast activation via the removal of H3K27me3 
at fibrosis related genes has already been described, and pharmacological inhibition of 
this demethylase ameliorates fibrosis in mouse models of SSc[29]. Moreover, JMJD3 
has an important role in monocyte to macrophage differentiation, where it regulates the 
demethylation of H3K27me3 at the promoters of genes important for M2 polarization, 
including IRF4[30]. Next to JMJD3, the methyl transferase enhancer of zeste homologue 
2 (EZH2), which trimethylates H3K27, resulting in transcriptional repression, has been 
shown to be involved in fibroblast activation[31] and metalloprotease activity in monocytes 
from SSc patients[32]. Given their roles in fibrosis, monocytes, and macrophage 
polarization, it would be highly interesting to further delineate the effects of JMJD3 or 
EZH2 modulation in circulating monocytes, especially in the control of bivalent genes. 
Since in chapter 4 we also identified many bivalent promoters primed for high activation 
in monocytes from early SSc patients, it would be highly interesting to study the effect 
of JMJD3 or EZH2 modulation in this patient group to determine whether epigenomic 
targeting can inhibit or delay the onset of fibrosis. 	
	 Interestingly, histone modifying enzymes have been shown to actively remodel 
transcription factor networks, and are known to regulate NR4A expression[33, 34], which 
we found to be downregulated in cDCs from SSc patients in chapter 5. This suggests 
that the downregulation of NR4As cDCs in SSc might be a consequence of an altered 
epigenomic landscape of these cells, again highlighting a role for epigenomic remodeling 
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and trained immunity in the dysregulation of immune cells in SSc. Thus rewiring the 
epigenomic landscape in SSc by targeting histone modifying enzymes may also help to 
modulate transcriptional networks implicated in SSc pathogenesis. To further investigate 
this, detailed characterizations of the epigenomic landscape of cDCs from SSc patients 
are needed. However, it should be noted that cDCs are a very rare cell population, and 
genome-wide ChIP-sequencing of these cells might prove difficult due to limited amounts 
of material, especially when studying patient samples. Moreover, it should be noted that 
the epigenetic basis of inflammatory responses is extremely complex, involving the 
interplay of multiple histone modifications, DNA methylation, regulation by long non-
coding RNAs, miRNAs and many more. We are just beginning to scratch the surface 
of this intriguingly complex regulatory network and much still remains to be elucidated. 
The application and integration of multiple omics technologies to further uncover the 
dynamics of inflammatory responses is crucial in this. Since epigenetic modifications are 
reversible, a better understanding of the epigenomic dynamics of inflammation in health 
and autoimmune disease should aid in the discovery of new therapeutic targets with the 
ultimate aim to restore immune tolerance. 

Targeting adaptive immunity through generation of tolerogenic DCs
	 As highlighted various times in this thesis, innate control of adaptive immunity 
is an important paradigm, and blocking interactions between the innate and adaptive 
immune system might ameliorate downstream adaptive immune responses in SSc 
patients. Indeed, in chapter 5 of this thesis we show that the activation of anti-inflammatory 
transcription factors of the NR4A family in cDCs leads to a decrease in the downstream 
activation of T cells. Thus, the generation of cDCs with a tolerogenic phenotype might 
hold therapeutic value to halt aberrant T cell activation in SSc. Various molecules such 
as anti-inflammatory cytokines (e.g. IL-10), vitamin D3, rapamycin, glucocorticoids and 
many more possess tolerogenic properties that induce the generation of tolerogenic 
DCs. These tolerogenic DCs may either be generated in vitro[35] followed by infusion, or 
in vivo, through the administration of tolerogenic immunotherapy. The in vitro generation 
and infusion of tolerogenic DCs has already been explored in various autoimmune 
diseases, such as RA[36], multiple sclerosis (MS)[37], and type I diabetes (T1D)[38]. In 
these patients, infusion of autologous tolerogenic dendritic cells was shown to be safe 
and well tolerated, highlighting the clinical potential for these approaches. Currently, two 
clinical trials with tolerogenic DC-based vaccines are ongoing for MS (NCT02903537 
and NCT02618902), and one for T1D (NCT04590872). Results from these studies 
should provide further insights into the potential for harnessing DCs in the treatment of 
autoimmune disease. 
	 Besides ex vivo generation and infusion of tolerogenic DCs, in vivo induction of 
tolerogenic DCs also forms an attractive therapeutic option. This can be achieved through 
the administration of biologicals or hormones with anti-inflammatory characteristics. One 
such molecule which has recently gained a lot of attention for its ability to induce a 
tolerogenic phenotype in DCs is vitamin D3[39]. Interestingly, vitamin D3 levels have 
been shown to be lower in SSc patients as compared to healthy individuals in various 
studies[40–42], leading to the hypothesis that reduced vitamin D3 is associated with a 
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loss of immune tolerance in SSc patients. However, reports on the association of vitamin 
D3 levels and clinical severity of SSc are conflicting, and the exact relation between 
low vitamin D3 and SSc remains unclear. Thus, there is a need for the exploration of 
other therapeutic avenues to induce tolerogenic DCs in SSc. In this context, it would 
be interesting to explore NR4As as novel targets to induce tolerance in DCs from SSc 
patients. In chapter 5, we show that NR4A activity can be modulated using agonists, 
providing initial proof for the potential of NR4A targeting to induce tolerance. Other 
pharmaceutical compounds activating NR4As, including synthetic bisindole-derived 
compounds (C-DIMs), cytosporone B (Csn-B) and mercaptopurine (6-MP), could also 
hold therapeutic potential in SSc. Interestingly, Csn-B has already been shown to 
ameliorate collagen deposition and myofibroblast differentiation in mouse models of 
fibrosis[43], highlighting the therapeutic potential of NR4A targeting and providing a new 
mechanism to exploit the induction of tolerogenic DCs in SSc. 

Stem cell transplantation in SSc: is the innate immune system crucial for a reset 
to tolerance?
	 Autologous hematopoietic stem-cell transplantation (AHSCT) currently is the 
only therapy with long-term clinical benefit in rapidly progressive SSc. The main rationale 
for applying AHSCT to SSc is to restore immune homeostasis. This is achieved by 
first applying an intensive immunoablative conditioning regimen, which eliminates the 
pathogenic self-reactive immune cells, followed by the reconstitution of a new immune 
system from reinfused hematopoietic precursors. The success of AHSCT is proposed 
to be largely dependent on the eradication of clonally expanded auto-reactive T cells. 
Indeed, after AHSCT, TCR diversities increase significantly, reflecting the reconstitution 
of a new, more tolerant immune system[44–46]. Notably, differences in the clonality of 
the TCR repertoire have also been observed between responders and non-responders 
to AHSCT, with non-responders having a less diverse repertoire[44, 45]. These data 
further highlight that decreased TCR repertoire diversity contributes to the autoimmune 
pathogenesis of SSc, as also shown in chapter 6 of this thesis. 
	 Both adaptive and innate immune responses are modulated after AHSCT in 
SSc and contribute to the generation of a tolerant immune system. Although the adaptive 
immune system has been studied in more detail, the innate immune system also has 
a potential immunosuppressive/modulating role in regulating adaptive responses after 
AHSCT. In support of this theory, CD14+ monocytes have already been shown to be 
capable of regulating T cell responses following AHSCT[47]. One important question 
that remains unanswered is whether the innate immune system, which reconstitutes 
much faster than the adaptive immune system[48], creates a permissive environment 
for the regeneration of a tolerant adaptive immune system after AHSCT. In other words, 
is the reconstitution of innate immune cells such as monocytes, DCs after AHSCT a 
prerequisite for the formation of a more diverse TCR repertoire? In order to answer this 
fundamental question, innate immune cells should be studied in more detail, especially 
at early time-points after AHSCT. Furthermore, it would be interesting to investigate if 
innate immune reconstitution and priming of adaptive responses underlies the efficacy 
of AHSCT and whether this is different in responders versus non-responders. To further 
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investigate to what extent the innate immune system facilitates the expansion of antigen 
specific T cells, it would be interesting to study the TCR repertoire over the course of 
immune system reconstitution after AHSCT. Moreover, it would be interesting to perform 
TCR profiling of T cells co-cultured with monocytes or DCs from SSc patients, before and 
after AHSCT, to see whether these cells indeed display a high potency to induce oligo 
clonal T cell expansion and how this is affected by AHSCT. 
	 Thus, further investigation into the exact role of innate immune cells and their 
importance in regulating immune responses after AHSCT is needed. Better insights 
into these responses may help to further improve patient care and predict transplant 
outcomes more accurately, as well as helping to gain a better understanding of SSc 
pathogenesis.

Directly targeting the adaptive immune system through T cell therapy
	 Given the evidence for T cells in the pathogenesis of SSc, and the fact that 
the AHSCT is proposed to be largely dependent on the eradication of auto-reactive T 
cells, directly targeting T cells might also hold therapeutic value for SSc. Depletion of T 
cells using alemtuzumab (an antibody targeting CD52, a molecule is highly expressed 
on the surface of B and T cells) has previously been explored in a case report for a 
single dcSSc patient, where treatment with alemtuzumab led to a rapid and sustained 
improvement of skin score[49]. However, although treatment with this antibody is 
approved for patients with relapsing forms of MS, side effects related to the development 
of secondary autoimmunity have been observed[50], putting alemtuzumab in a not very 
desirable position. Moreover, T cell depleting therapies like alemtuzumab are in the 
gray zone between immunosuppression and immunoablation, with a high potential to 
drive the immune system in an undesirable lymphopenic state. Thus, targeting specific 
autoreactive T cell clones might hold better therapeutic potential. Since in chapter 6 
of this thesis we show that specific T cell clones are highly expanded in SSc patients 
over time, specific targeting of these T cells seems plausible. As an example, adoptive 
immunotherapy to transfer genetically engineered-Tregs expressing TCRs against the 
same antigens as autoreactive CD4+ and/or CD8+ T cells could potentially suppress T 
cell mediated autoimmune responses[51]. However, since the (auto)antigens targeted 
by T cells in SSc remain yet to be elucidated, engineering antigen specific Tregs is not 
possible yet. On the other hand, clonally expanded T cells from SSc patients could be 
converted into Tregs through upregulation of the Foxp3 gene, thereby potentially retaining 
their antigen specificity while gaining a suppressive phenotype[52]. Another approach of 
targeting autoreactive T cells is through T cell vaccination (TCV). The concept of TCV is 
based on the finding that inactivated autoreactive T cells can induce inhibition of T cell 
dependent autoimmune responses[53]. Here, the target antigen against which immunity 
is induced is (parts of) the TCR of autoreactive T cells, thereby eliminating them. However, 
the challenge here is to elucidate exactly which TCRs are involved in the response to 
disease related (auto)antigens. 
	 Our analyses in chapter 6 as well as chapter 7 show that expanded T cell 
clones in SSc as well as JIA are characterized by a high sequence similarity, indicating 
that pools of highly expanded T cell clones respond to the same (auto)antigens. This 
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knowledge can be used to obtain motifs in antigen specific TCRs that are shared across 
patients and design broad pools of TCVs that can potentially ameliorate autoreactive 
T cell responses. In order to achieve this, studies of large patients cohorts with high-
throughput deep sequencing of a large number of T cells are necessary. The design 
of novel machine learning methods to unravel motifs shared across autoreactive T cell 
clones should also aid in the discovery and classification of autoimmune related TCRs. 
Such efforts are currently underway, by our group as well as others[54, 55], and promise 
to bring exciting new developments to the field of TCR research.

Challenges and considerations for future studies
	 The studies presented in this thesis provide new insights into the molecular 
mechanisms underlying aberrant immune cell activation in SSc. From these results, it 
is clear that immune cell dysregulation in SSc pathogenesis is mediated through the 
derailment of various factors at different levels of gene expression regulation, including 
previously unannotated lncRNAs, histone modifications and transcription factor regulatory 
networks. However, exactly how these separate factors interplay with each other and 
to which extent their regulatory modes of action are cell type specific remains to be 
uncovered. Here, potential future studies to answer these questions are proposed.

Multi-omics integration to generate extensive immune regulatory networks
	 To obtain a more complete picture of the full spectrum of factors contributing 
to immune cell activation, and loss of immune tolerance, future studies will require the 
integration of individual omics datasets to get a more complete understanding of the 
immunopathology of SSc. In other words: a shift from single-omics to integrated multi-
omics is required. Such multi-omics studies should include the information on DNA 
sequence variation, open chromatin regions, histone modifications and DNA methylation, 
transcription factor binding and activity, RNA expression variation, and post-transcriptional 
and translational regulation. Information from these different omics layers can be used 
to build extensive gene regulatory networks (GRNs)[56]. GRNs provide a map for the 
molecular processes and interactions at different levels of cellular regulation, and have 
the potential to predict the outcomes of immune cell perturbation (for example as a result 
of genomic alterations or stimulation). Therefore, future studies applying multi-omics 
approaches paired with computational modelling and GRN construction should provide 
better insights into the factors that skew the immune system in SSc towards an hyper-
activated status. Such studies should especially focus on the epigenomic landscape, 
novel regulators such as lncRNAs, and transcription factor feedback loops since these 
were demonstrated to be important factors contributing to loss of immune tolerance in 
SSc in this thesis. 
	 One way to perform high throughput analyses in a multi-omics approach is to 
simultaneously apply multiple omics techniques to measure a single biological sample. 
In this way, an unbiased view of the complex relationships between genomics, different 
epigenomic markers and their effect on gene-expression measured by transcriptomics can 
be obtained. The usefulness of this approaches has recently been highlighted by Ai et al., 
who combined ATAC-seq, ChIP-seq of six different histone marks, RNA-seq, and WGBS 
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for DNA methylation, to comprehensively study the epigenomic landscape of rheumatoid 
arthritis fibroblast-like synoviocytes (FLS)[57]. Because the authors used FLS from RA 
patients and healthy donors that were grown out for multiple passages, enough material 
could be obtained to perform these multi-omics analyses from material obtained from a 
single sample. In the case of more rare immune cell populations, the limited amounts 
of primary biological material that can be obtained will not suffice. However, multiple 
analyses combining two or three omics approaches for primary immune cells have been 
performed already[58–60] (also in chapter 4 and chapter 5 of this thesis) and these 
provide valuable insights into how multiple omics layers interplay and affect each other. 
Further such studies should provide more data for the construction of immune regulatory 
GRNs and help to get better insights into signaling pathways leading to immune cell 
dysregulation in SSc. 

Single cells approaches to delineate cell type specific dysregulation in SSc
	 Using traditional, bulk omics approaches, the contribution of heterogeneous, 
rare cell populations are often not identified because their signal gets drowned out by 
the presence of larger cell pools. To address this, new single-cell technologies have 
recently been developed that can assess the genome, epigenome, transcriptome, 
proteome and metabolome at a single-cell resolution[61]. These single-cell omics can 
help to pinpoint specific immune cell subsets that contribute to disease pathogenesis in 
more detail. Moreover, in addition to obtaining a better understanding of the contribution 
of various cell populations to SSc pathogenesis, single-cell profiling can also help to 
identify specific drug targets uniquely expressed in specific immune cell populations. 
Moreover, single cell approaches can also help to overcome the limited amount of 
material that is available for multi-omics studies, as single cell multi-omics approaches 
only require a small amount of cells as compared to bulk approaches. A few single cell 
studies have recently been performed using material from SSc patients, which have 
helped to uncover pathogenesis associated signatures in distinct cell populations. These 
include the activation of macrophages and pDCs in skin[62], as well as an enrichment of 
SSc-associated single-nucleotide polymorphisms and open chromatin regions in DCs in 
skin lesions[63]. However, thus far, these single cell studies in SSc mainly focus on the 
analysis of single layers of omics data, thereby not capturing the full spectrum of data 
needed to construct cell type specific GRNs. Thus, future single-cell studies should also 
focus on the integration of multiple omics techniques. 

Sample size and reproducibility 
	 As SSc is a relatively rare disease, current studies into SSc pathogenesis 
(including the ones presented in this thesis) are often limited by small sample sizes. Given 
the heterogeneity characterizing SSc patients, small sample sizes make it challenging 
to find coherent signatures within or between different cohorts of SSc patients. Ideally, 
for future studies, larger sample sizes are needed to find distinct differences in immune 
cell signatures between SSc patients and healthy donors, as well as between different 
subtypes of SSc. As this might not always be feasible due to limited sample availability, 
the development of collective standardized protocols and computational tools to allow 
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for the integration and comparison of multiple diverse datasets from different research 
groups could offer a potential solution. To this end, thorough benchmarking needs to be 
performed to evaluate the performance of diverse experimental and computational tools. 
In the field of cancer research, gold standard multi-omics datasets such as The Cancer 
Genome Atlas (TCGA)[64] already exist. Comparable initiatives in the field of SSc and 
other (rheumatic) autoimmune diseases could help to standardize the way of performing 
omics studies within this field, and provide a solid base for omics datasets to build upon 
and complement each other. 

Conclusions 
	 Using different omics techniques, the work presented in this thesis shows 
that immune dysregulation in SSc can be attributed to aberrances at various levels 
of molecular organization. These include the regulation of TLR signaling by lncRNAs, 
epigenomic imprinting of histone modifications and downregulation of immune regulatory 
transcription factors in monocytes and DCs. Enhanced activation of these innate immune 
cells has the potential to cue the adaptive immune system and orchestrate the generation 
of highly clonal autoreactive T cell repertoire. Future studies using standardized multi-
omics and single cell approaches should help to further unravel the regulatory pathways 
contributing to immune cell dysregulation in SSc.
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ENGLISH SUMMARY

Background and aims of this thesis
	 Systemic sclerosis (SSc) is a complex, heterogeneous autoimmune disease 
characterized by vascular abnormalities, immune involvement and extensive fibrosis 
of the skin and internal organs. Immune system dysregulation is recognized as one 
of the main culprits of SSc pathogenesis, however, it remains unclear what molecular 
mechanisms underlie this. By applying various high-throughput omics approaches, the 
studies presented in this thesis aim to uncover the molecular mechanisms contributing to 
immune cell dysregulation in SSc. 

Factors driving innate immune cell dysregulation in SSc
	 In chapter 2, we performed transcriptomic profiling of monocytes from healthy 
individuals and SSc patients to identify lncRNAs involved in the regulation of toll-like 
receptor (TLR) induced pro-inflammatory responses in these cells. We found the lncRNA 
NRIR (Negative Regulator of the IFN Response) to be upregulated in SSc as compared 
to healthy monocytes. Characterization of NRIR function by siRNA mediated knockdown 
showed that this lncRNA is involved in the positive regulation of interferon (IFN) inducible 
genes. Notably, we also found NRIR to be upregulated in a publicly available RNA-
sequencing dataset of monocytes from systemic lupus erythematosus (SLE) patients, 
which, like SSc, are also characterized by the presence of an IFN signature. These 
results indicate a role for NRIR in controlling IFN responses in monocytes from SSc 
patients, and potentially other autoimmune diseases. 
	 In chapter 3, the lncRNA profile of SSc monocytes was investigated in more 
detail. Here we show that lncRNAs are also implicated in regulation of other pathways 
important for monocyte biology, including monocyte apoptosis and cytokine secretion. We 
identified the lncRNA PSMB8-AS1 as a potential regulator of immune related pathways 
in SSc monocytes. siRNA mediated knockdown of PSMB8-AS1 reduced the secretion of 
the cytokines IL-6, TNFα and IL-8 by stimulated monocytes, further highlighting lncRNAs 
as novel molecular factors contributing to monocyte dysregulation in SSc. 
	 In chapter 4, we investigated the epigenomic landscape of monocytes from 
fifteen healthy controls and sixty patients with SSc, SLE or rheumatoid arthritis (RA). 
Whereas SSc and SLE monocytes were marked by a strong dysregulation of IFN and 
TNFα signaling pathways, RA monocytes lacked the IFN signature and were highly 
enriched for TNFα, TGFβ, and collagen formation pathways. The dysregulation of these 
disease specific pathways was already imprinted at the histone level, showing that 
aberrances in histone marks selectively skew SSc, SLE and RA monocytes towards 
distinct pro-inflammatory phenotypes. We also identified numerous bivalent promoters, 
of which many displayed increased levels of H3K4me3 in RA and eaSSc, and to a 
limited extent dcSSc monocytes. Interestingly, a large number of bivalent domains were 
identified in promoters of genes related to response to fibroblast growth factors, ECM 
organization, and vasculogenesis. 
	 In chapter 5, we identified the nuclear receptor 4A subfamily (NR4A1, NR4A2, 
NR4A3), as important transcriptional repressors of inflammation in conventional dendritic 
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cells (cDCs) from SSc patients. Characterization of the genome-wide binding sites of 
NR4As in resting and stimulated cDCs by ChIP-sequencing showed that NR4As are 
strongly involved in transcriptional programs underlying cDC dysregulation in SSc. 
Indeed, functional experiments using agonists targeting NR4As showed that these 
receptors are involved in cytokine production and modulation of T cell activation by cDCs. 
Thus, NR4As are important negative regulators of immune pathways in cDCs, and NR4A 
downregulation potentially contributes to the dysregulation of these cells in SSc patients. 

Skewing of the adaptive immune system in SSc
	 In the second part of this thesis, the dynamics of the T cell repertoire in SSc 
were studied to better understand the role of antigen specific T cell responses in SSc 
pathogenesis. In chapter 6, we show that the TCR repertoire in SSc patients is highly 
persistent over time, which is likely driven by antigenic selection. Moreover, we identified 
clusters of TCRs with similar specificities in SSc patients over time, representing groups 
of T cells that are likely to recognize the same or highly similar antigens. 
	 To determine to what extent the longitudinal persistence of circulating T cells 
are characteristic of SSc, in chapter 7 we studied the immune cell architecture and 
TCR repertoire dynamics of peripheral blood and affected joints of juvenile idiopathic 
arthritis (JIA) patients. Whereas in SSc patients T cells from peripheral blood were highly 
clonally expanded, only T cells obtained from affected joints from JIA patients exhibited 
an expanded profile while circulating T cells did not. These results indicate that tissue 
specific dominant (auto-)antigens in JIA patients heavily skew the TCR repertoire, while 
in SSc, the potential antigens might be more ubiquitously expressed. Additionally, JIA 
patients were characterized by a strong expansion and persistence of regulatory T cells 
(Tregs) rather than effector T cells, whereas in SSc, effector CD4+ and CD8+ T cells 
were highly expanded over time. 

Concluding remarks
	 Altogether, the work presented in this thesis shows that immune dysregulation 
in SSc can be attributed to aberrances at various levels of molecular organization. 
These include the regulation of TLR signaling by lncRNAs, epigenomic imprinting of 
histone modifications and downregulation of immune regulatory transcription factors in 
monocytes and DCs. Enhanced activation of these innate immune cells has the potential 
to cue the adaptive immune system and orchestrate the generation of highly clonal 
autoreactive T cell repertoire. These insights offer new avenues for the development of 
novel therapeutics for SSc as well as other autoimmune diseases. 
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Achtergrond en doelstelling van dit proefschrift
	 Systemische sclerose (SSc) is een complexe, heterogene auto-immuunziekte 
die wordt gekenmerkt door vasculaire afwijkingen, activatie van het immuunsysteem en 
uitgebreide fibrose van de huid en inwendige organen. Ontregeling van het immuunsysteem 
wordt gezien als een van de belangrijkste oorzaken van SSc-pathogenese, maar het blijft 
onduidelijk welke moleculaire mechanismen hieraan ten grondslag liggen. De studies in 
dit proefschrift, waar verschillende omics-technieken worden toegepast, hebben als doel 
de moleculaire mechanismen bloot te leggen die bijdragen aan de ontregeling van het 
immuunsysteem in SSc.

Ontregeling van het aangeboren immuunsysteem in SSc
	 In hoofdstuk 2 hebben we het transcriptoom van monocyten van gezonde 
controles en SSc patiënten onderzocht om lange niet-coderende RNAs (lncRNAs) 
te identificeren die betrokken zijn bij de regulatie van door toll-like receptor (TLR) 
geïnduceerde pro-inflammatoire processen. De lncRNA NRIR had een hogere expressie 
in monocyten van SSc patiënten dan gezonde monocyten. Met behulp van knockdown 
experimenten hebben wij aangetoond dat NRIR betrokken is bij de positieve regulatie 
van interferon (IFN) induceerbare genen die belangrijk zijn in de pathogenese van SSc. 
Daarnaast was de expressie van NRIR ook verhoogd in monocyten van patiënten met 
systemische lupus erythematodes (SLE), die, net als SSc patiënten, worden gekenmerkt 
door een verhoogde expressie van IFN induceerbare genen. Deze resultaten wijzen op 
een rol voor NRIR bij het controleren van IFN-responsen in monocyten van SSc patiënten 
en mogelijk ook bij andere auto-immuunziekten.
	 In hoofdstuk 3 tonen we aan dat lncRNAs ook betrokken zijn bij de regulatie 
van andere processen die belangrijk zijn voor de biologie van monocyten, waaronder 
apoptose en cytokine secretie. Daarnaast identificeerden we PSMB8-AS1 als een 
potentiële regulator van immuun gerelateerde processen in monocyten van SSc 
patiënten. Verder laten we zien dat knockdown van PSMB8-AS1 in monocyten leidt tot 
een verminderde secretie van de pro-inflammatoire cytokines IL-6, TNFα en IL-8. Deze 
resultaten tonen aan dat lncRNAs nieuwe moleculaire factoren zijn die bijdragen aan 
ontregeling van monocyten in SSc. 
	 In hoofdstuk 4 hebben we gekeken naar de correlatie tussen het transcriptoom 
en het epigenoom in monocyten van vijftien gezonde controles en zestig patiënten met 
SSc, SLE of reumatoïde artritis (RA). Terwijl monocyten van SSc en SLE patiënten 
werden gekenmerkt door een sterke ontregeling van IFN en TNFα signalering, misten 
monocyten van RA patiënten de IFN-signatuur en waren sterk verrijkt voor genen 
gerelateerd aan TNFα- en TGFβ signalering en collageenvorming. Deze ontregeling 
was al op het niveau van histonen ingeprent, wat aantoont dat selectieve afwijkingen 
in het epigenoom van SSc-, SLE- en RA-monocyten verschillende pro-inflammatoire 
fenotypes onder ligt. We vonden ook talrijke genen met bivalente promotors, waarvan 
vele verhoogde niveaus van H3K4me3 vertoonden in monocyten van RA en specifieke 
subtypes van SSc patiënten (eaSSc en dcSSc). Een groot aantal van deze bivalente 
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domeinen werden geïdentificeerd in promotors van genen geassocieerd met de respons 
op fibroblast groeifactoren, ECM-organisatie en vasculogenese. 
	 In hoofdstuk 5 laten we zien dat de transcriptiefactoren NR4A1, NR4A2, en 
NR4A3 belangrijke remmers zijn van pro-inflammatoire responsen in conventionele 
dendritische cellen (cDCs). Door middel van ChIP-seq tonen we aan dat een groot 
deel van de genen die differentieel tot expressie komen in cDCs van dcSSc patiënten 
direct gereguleerd worden door NR4As. Dit suggereert dat NR4As sterk betrokken zijn 
bij transcriptionele programma’s die ten grondslag liggen aan de ontregeling van cDCs 
in SSc patiënten. Functionele experimenten met agonisten voor NR4As toonden aan 
dat deze transcriptie factoren betrokken zijn bij cytokineproductie en T-cel activatie door 
cDCs. NR4As zijn dus belangrijke negatieve regulatoren van de immuunrespons in cDCs 
en hun verlaagde expressie draagt mogelijk bij aan de ontregeling van deze cellen in 
SSc patiënten.
 
Ontregeling van het adaptieve immuunsysteem in SSc
  	 In het tweede deel van dit proefschrift hebben we de dynamiek van het T-cel 
repertoire in SSc bestudeerd om de rol van antigeen specifieke T-cel reacties in 
SSc-pathogenese beter te begrijpen. Hiervoor onderzochten we in hoofdstuk 6 het 
T-celreceptor (TCR) repertoire van circulerende T-cellen uit longitudinale monsters 
verkregen van vier SSc-patiënten. Het TCR repertoire in SSc-patiënten is zeer stabiel 
over tijd. Deze stabiliteit wordt waarschijnlijk gedreven door antigene selectie. Verder 
vonden we ook clusters van T-cellen in SSc patiënten die gekenmerkt werden door 
een hoge overeenkomst in hun TCR sequenties. Deze T-cellen herkennen hierdoor 
waarschijnlijk dezelfde of sterk vergelijkbare antigenen.
	 Om te bepalen in hoeverre de stabiliteit van circulerende TCR repertoire 
kenmerkend is voor SSc, hebben we in hoofdstuk 7 de immuun cel compositie en TCR 
repertoire dynamiek van perifeer bloed en aangetaste gewrichten van patiënten met 
Juveniele Idiopathische Artritis (JIA) bestudeerd. Terwijl bij SSc-patiënten T-cellen uit 
perifeer bloed sterk klonaal geëxpandeerd waren, vertoonden bij JIA-patiënten alleen 
T-cellen verkregen uit aangetaste gewrichten een geëxpandeerd profiel. Deze resultaten 
geven aan dat weefselspecifieke dominante (auto-)antigenen bij JIA-patiënten T-cellen 
activeren, terwijl in SSc de potentiële antigenen waarschijnlijk door het hele lichaam 
tot expressie worden gebracht. Daarnaast werden JIA-patiënten gekenmerkt door een 
sterke expansie regulatoire T-cellen (Tregs), terwijl in SSc de effector T-cellen sterk 
waren geëxpandeerd. T-cel activering en expansie in JIA kan dus het gevolg zijn van het 
niet onderdrukken van autoreactieve T-cellen door Tregs, terwijl de activatie van effector-
T-cellen in SSc waarschijnlijk wordt gedreven door een disregulatie van aangeboren 
immuun cellen.

Conclusie
	 Al met al laat het werk gepresenteerd in dit proefschrift zien dat de disregulatie 
van het immuunsysteem in SSc kan worden toegeschreven aan afwijkingen op 
verschillende niveaus van moleculaire organisatie in immuuncellen. Deze omvatten 
de regulatie van TLR-signalering door lncRNAs, epigenomische imprinting van histon-
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modificaties en verlaagde expressie van immuun regulerende transcriptiefactoren 
in monocyten en DC’s. De ontregeling van het aangeboren immuunsysteem leidt tot 
overactiviteit van het adaptieve immuunsysteem en het ontstaan van een zeer klonaal 
autoreactief T-celrepertoire. Deze inzichten in vormen belovende aangrijpingspunten 
voor het ontwikkelen van nieuwe therapieën voor SSc en andere auto-immuunziekten. 
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